Homework #4

e

Websocket Handshake
Parse frames

Echo

Drawing Board

DMs

WebRTC

>

Websockets

Request

New
message: €

e Response

Only client can request data

Http works on the idea of request and responses. But client that wants
information has to request (has to ask for it first)

>

Websockets

Polling

Client 2 sends new message

Every Second, make request

New
message:

“Hello” e,

Very inefficent

What if we have chat feature where we want information to be sent 1o
client even when it doesn't ask for it. This is what your homework does

>

Websockets

Polling

Client 2 sends new message

Every Second, make request

New

message:
“Hello”

Very inefficent

why can't the sever just send a update right away. That is just what
http is limited to, server is not allowed to send events to client

>

Websockets

Polling

Client 2 sends new message

Every Second, make request

Very inefficent

Can have massive overhead with something like twitch, having all

these users requesting messages.

e Estimated $4-6 million a month to run twitch, 2.4 million average
viewers

e Only want to have exactly as many requests as needed

>

Websockets

Websockets

Client 2 sends new message
Just sends data when arrives

Only send what you need

To solve this, we use websockets

>

Websockets

Websockets

Client 2 sends new message
Just sends data when arrives

New
message:
“Hello”

Only send what you need

This works because websockets and HTTP both use TCP. TCP allows for
bidirectonal communication, websockets takes advantage of that.

Client Server

Open \
RS,

\)

N
1)
: Cosex")

/2

Persistent Connection

HTTP closes right away
Get your data (html, css, js) then it closes TCP connection

Client Server
Opening Handshake
GET /ws-endpoint HTTP/1.1

o>
-
s
Upgrade: websocket /

Connection: Upgrade < st | lappend exactly this “258EAFA5-E914-47DA-95CA-C5ABODC85B11”
Sec-WebSocket-Key: <random_key: »

1bDkafUVU8jAd93txoglGg==

> 1bDkafUVUB8jAd93txoglGg==258EAFA5-E9Q14-47DA-95CA-C5ABODC85B11
Take SHA-1 Hash
Connection opened

= HTTP/1.1 101 Switching Protocols
*ﬁfﬁﬂcmbmkm%mw l Base 64 encode
<~

b178457c4a4b5a62e1049addb00ed4a96414947d

SXhFFEpLWMLhBJrdsg7UqWQUIHO=

s

Bidirectional Messaging
Eg: 0x00 <UTF-8 payload> 0xff

One side closes the connection
WebSocket Close [FIN]

<€ >

Not going to close the TCP connection the user requested with

0 1 2 3
0123456789012 34561789012345¢6789°01
R S o s e e e B o o e e e e e +
|F|R|R|R| opcode|M| Payload len | Extended payload length |
|Z|s|s|s| (4) |a] (7) | (16/64) |
IN|V|V]|V]| |s| | (if payload len==126/127) |
| 11]2]3] | K] | |
R S S S N ——— O ———— F o e o e G o -
| Extended payload length continued, if payload len == 127 |
o em = e e .- - - o e +
| |Masking-key, if MASK set to 1 |
o e e e e e o e e e o o o o i i o e o i -

| Masking-key (continued) | Payload Data

e e e e - -
. Payload Data continued ...

e e e e e e e e e +
| Payload Data continued ... |
o o e o e e e o e e +

Then all from there on this bidirectional connection sends frames.
ALL IN BITS

Oth Byte 2nd Byte
1 2 3
012345617|89012345|67890123|456789°01
S S SN WSS ORI | SRS | S — +
F|R|R|R| opcode|M| Payload len Extended payload length |
Ils|s|s| (4) |a| (7) (16/64) |
N|V|V|V] S| (if payload len==126/127) |
|1]2]3] K| |
SR e S " | S I S S | P | N 4
| Extended payload length continued, if payload len == 127 |
T S A +
| |Masking-key, if MASK set to 1 |
S S S R M -
| Masking-key (continued) | Payload Data
tommmm e = = = = - = = = = = = = = = = +
Payload Data continued ...
P e -
| Payload Data continued ... |
o e e e e e e e e e e e e e e - ———————————————— -
The diagram from the numbers represent each bit not

byte (Each row 32 bits or 4 bytes)

https://datatracker.ietf.org/doc/html/rfc6455#section-5.2

>

Websockets

Oth Byte 1lst Byte

2nd Byte
2y 3

Each row represents
another set of 4 bytes

0123456789012 345

F|R|R|R| opcode|M| Payload len

I|s|s|s| (4) |A| (7)
N|V|V|V] S|
|1]2]3] K|

6 7890123456789 °01

Extended payload length
(16/64)

(if payload len==126/127)

=
yload length coqtinued, if paylgad len ==

The diagram from the
byte (Each row 32 bits or 4 bytes)

numbers represent each bit not

e e e | 4

https://datatracker.ietf.org/doc/html/rfc6455#section-5.2

>

Websockets

Oth Byte 1st Byte 2nd Byte
Y 4 Y 2Y 3

I|s|s|s| (4)

~ |
; (if payload len==126/127) |
Each row represents 1
another set of 4 bytes | I
_______ &
=) 7th Byte

"""""""""" 11thByte
"""""""""""""""""""""""""" 15th Byte
" lethByte | 17thByte . 18thByte 19thByte
o Payload Data continued ... |
e o e e e e i e e +

The diagram from the numbers represent each bit not

byte (Each row 32 bits or 4 bytes)

https://datatracker.ietf.org/doc/html/rfc6455#section-5.2

0 1 2 3
0123456789 012345¢678901234561789 01
o L s S R — S R — S S +
F R|R|R| opcode|M| Payload len | Extended payload length |
I's|s|s| (4) |[a] (7) | (16/64) |
N V|V|V| El | (if payload len==126/127) |
1|2]3] K| | |

------ totetmmnnnnatetennnnennnnmeet - - - - - - - - - - - - - -
| Extended payload length continued, if payload len == 127 |
s tommm e m e —————————— +
| |Masking-key, if MASK set to 1 |
S S +
| Masking-key (continued) | Payload Data

tom e —— . ———————————————— - - - - - - - - = == - - -
. Payload Data continued ...
i e i S +
| Payload Data continued
S S M S +

FIN: The finish bit
1 - This is the last frame for this message
O - There will be continuation frames containing more data for the

same messdage

0 1 2 3
012 3 4 5678 9012 34561789 0123456178901
+— et — S R — S S +
|F|R|R|R opcode |M| Payload len | Extended payload length |
|Tis|s[s| (4) A (7) | (16/64) |
IN|V|V|V |s| | (if payload len==126/127) |
| J1]2]3 K| | |
S S S totommmmemenn———t - - - - - - - - - - - = - +
| Extended payload length contlnued, if payload len == 127 |
s tommm e m e —————————— +
| |Masking-key, if MASK set to 1 |
S S +

| Masking-key (continued) | Payload Data

e e e e e e . o e - - -
. Payload Data continued ...
i e i S +
| Payload Data continued
S S M S +

RSV: Reserved bits
Used to specify any extensions being used
[You can assume these are always 000 for the HW]

0 1 2 3
012 3 4 5678 9012 34561789 0123456178901
tot ot ot fmmmmma T S —— S S +
|F|R|R|R| opcode M| Payload len | Extended payload length |
|T|s|s|s] (4) |A| (7) | (16/64) |
IN|V| V|V S| | (if payload len==126/127) |
| 1]2]3 K| | |
R SRR S S S—— R —— t m- - - -.-—-— - - +
| Extended payload length continued, if payload len == 127 |
s tommm e m e —————————— +
| |Masking-key, if MASK set to 1 |
R S S +

| Masking-key (continued)] Payload Data

tom e —— . ———————————————— - - - - - - - - = == - - -
Payload Data continued ...

i e i S +

| Payload Data continued

S S M S +

Opcode: Operation code

Specifies the type of information contained in the payload
Ex: 0001 for text, 0010 for binary, 1000 to close the
connection, 0000 for continuation frame

0 1 2 3
0123456789 012345¢678901234561789 01
e S — o B — S S +
|F|R|R|R| opcode M Payload len | Extended payload length |
|z|s|s|s| (4) A (7) | (16/64) |
IN|V|V]|V]| S | (if payload len==126/127) |
| 11]2]3] K | |
s S T S N ! S —— t m- - - -.-—-— - - +
| Extended payload length continued, if payload len == 127 |
s tommm e m e —————————— +
| |Masking-key, if MASK set to 1 |
S S +

| Masking-key (continued) | Payload Data

e e e e e e . o e - - -
. Payload Data continued ...
i e i S +
| Payload Data continued
S S M S +

MASK: Mask bit

Set to 1 if a mask is being used

 Set to 0 if no mask is being used

» This will be 1 when receiving messages from a client

0 1 2 3
012345678901234567890123456789°01

S o e o s e e S s e e e e e s i +
|F|R|R|R| opcode Payload len | Extended payload length |
|Z|s|s|s| (4) (7) (16/64) |
IN|V|V]|V]| (if payload len==126/127) |
| 1] |
bt

|

MASK: Mask bit

Set to 1 if a mask is being used

 Set to 0 if no mask is being used

» This will be 1 when receiving messages from a client

0 1 2 3
0123456789012 3456789 01234561789 01

S N —— S S +
|F|R|R|R| opcode = Payload len | Extended payload length |
Iz|s|sls| 4) §§) (7) | (16/64) |
IN|V|V|V] | | (if payload len==126/127) |
| [1]2 | |
+—t—+

|

MASK: Mask bit

Set to 1 if a mask is being used

 Set to 0 if no mask is being used

» This will be 1 when receiving messages from a client

0 1 3
0123456789012 . $ S 345678901

T e S R J S S S +
F|R|R|R| opcode|M Extended payload length
I|s|s|s| (4) |A (16/64)
N|V|v |s! (if payload len==126/127)
|1]2
+—+

| Masking-key (continued) | Payload Data
e — e e ————————————— - - - - - = - = == = = =t
. Payload Data continued ...

e e e e e e e e e +
| Payload Data continued

o e e e e o e e +

Payload (Frame) Length

If the length is bytes

« The length is represented in 7 bits, sharing a byte with the MASK bit
» The next bit after the length is either the mask or payload

0 1 3
01234561789 012345
e S T N R
|F|R|R|R| opcode|M Payload len Extended payload length
|T|s|s|s| (4) |a (7) (16/64)
IN|V|V|V]| |s (if payload len==126/127)
| [1]2]3] Xl 126
e S
| Extended payload length continued, if payload len == 127 |
e W St S tommm e m e —————————— +
| |Masking-key, if MASK set to 1 |
S S +
| Masking-key (continued) | Payload Data
tommmm s = = = = - - = = = = = = = = = +
Payload Data continued ...
et e e e e e e e e e e +
| Payload Data continued
S S NS +

Payload (Frame) Length

If the length is >=126 and <65536 bytes

* The 7 bit length will be exactly 126 (1111110)

» The next 16 bits (2 byte) represents the payload length

0 i b
0123456789 012345
S N
|F|R|R|R| opcode|M Payload len Extended payload length
|z|s|s|s| (4) |a (7) (16/64)
IN|V|V|V] |s (if payload len==126/127)
| |1]2]3] x| 127
N S S S S :
Xtended payloa eng continued, 1f payload Ten == |
+ 1
l Masking-key, if MASK set to 1 |
_______________________________ ifi
| Masking-key (continued) | Payload Data
B e =
Payload Data continued ... :
e -
| Payload Data continued
o e e e e o e e .

Payload (Frame) Length

If the length is >=65536 bytes

» The 7 bit length will be exactly 127 (1111111)

» The next 64 bifs (8 bytes) represents the payload length

0 1 2 3
0123456789012 3456789 01234561789 01

e S — S R — S S +
|F|R|R|R| opcode|M| Payload len | Extended payload length |
|T|s|s[s| (4) A (7) | (16/64) |
IN|V|V|V] S | (if payload len==126/127) |
| 11]2]3] K| | |
R S S N T —— t m- - - -.-—-— - - +
| Extended payload length continued, if payload len == 127 |
s tommm e m e —————————— +
| |Masking-key, if MASK set to 1 |
e s e e e e e e e 4
| Masking-key (continued) Payload Data

Payload Data continued ...

Payload Data continued ...

The Payload

The data you are trying to send in bytes

- If there is a mask, every 4 bytes will be XOR’d with the 4 bytes of the
mask to get true payload

Examples

0 1 2 S
012345617895 0123456789 0123456783901
S S o e o e e o s e e e e +
|F|R|R|R| opcode|M| Payload len | Extended payload length |
|Z|s|s|s| (4) |A] (7) | (16/64) |
IN|V|V]|V]| |s| | (if payload len==126/127) |
| [1]2]3] | K| | |
e e o o e e T R S —— t o - = m-m---—--—- - -
| Extended payload length continued, if payload len == 127 |
e ™ o e e +
| |Masking-key, if MASK set to 1 |
e e e e e -

| Masking-key (continued) | Payload Data

tem e e e e e e e e ——————- - - - - - - = - - = - - - - -
. Payload Data continued ... :
e e e e e e e e = +

>

Websockets
Example #1

Oth Byte 1st Byte 2nd Byte

FIN: The finish bit
« 1 - This is the last frame for this message

>

Websockets
Example #1

Oth Byte 1st Byte 2nd Byte

e [You can assume these are always 000 for the HW]

>

Websockets
Example #1

Oth Byte 1st Byte 2nd Byte

opcode: Operation code
« 0010 for binary

>

Websockets
Example #1

Oth Byte 1st Byte 2nd Byte

MASK: Mask bit
 Set to 0 no mask is being used

>

Websockets
Example #1

Oth Byte 1st Byte 2nd Byte

Payload (Frame) Length
 Length of 2 (0010000)

>

Websockets

Example #1
Oth Byte 1st Byte 2nd Byte
The Payload

« Its two bytes of binary data

>

Websockets
Example #1

Oth Byte 1st Byte 2nd Byte

FIN: The finish bit - 1

000
opcode: Operation code - 0010 for binary
MASK: Mask bit - Set to 0 no mask is being used
Payload (Frame) Length - Length of 2 bytes (0000010)
The Payload - Its two bytes of binary data

>

Websockets
Example #2

FIN: The finish bit
1 - This is the last frame for this message

>

Websockets
Example #2

* [You can assume these are always 000 for the HW]

>

Websockets
Example #2

opcode: Operation code
» 0001 for text

>

Websockets
Example #2

MASK: Mask bit
» Set to 1 mask is being used

>

Websockets
Example #2

Payload (Frame) Length
» The 7 bit length is exactly 126 (1111110)
* length is >=126 and <65536 bytes

>

Websockets
Example #2

Extended Payload (Frame) Length
 Length is, 28250 bytes

>

Websockets
Example #2

* This is the mask that will XOR with payload

MASK

>

Websockets
Example #2

MMM

The Payload
 Only first 4 bytes of 28250, would continue on

>

Websockets
Example #2

IOOOIIIIIIIIIIII01101 11001011010

FIN: The finish bit - 1

000
opcode: Operation code -
0010 for text
MASK: Mask bit - Setf fo 1
mask is being used
Payload Length - 126
Extended Payload (Frame)
Length - Length of 28250
bytes
MASK - will XOR with payload
The Payload - 28250 bytes of
data

