
Homework #1
CSE312



Homework Topics
- Handling Request, Response
- Router Class
- Hosting Static Files
- Handout Code



Homework Topics Request class



Homework Topics
Request Class
Self.body

POST /api/chats HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Content-Length: 18
Cookie: id=123; theme=dark
Origin: http://localhost:8080

{"content":"asdf"}



Homework Topics
Request Class
Self.body

“POST /api/chats HTTP/1.1\r\n
Host: localhost:8080\r\n
Content-Type: application/json\r\n
Content-Length: 18\r\n
Cookie: id=123; theme=dark\r\n
Origin: http://localhost:8080\r\n
\r\n
{"content":"asdf"}”

-Request as a single string, would be single line 
if wasn’t on slide
-Notice “\r\n\r\n” between headers and body

http://localhost:8080


Homework Topics
Request Class
Self.method

POST /api/chats HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Content-Length: 18
Cookie: id=123; theme=dark
Origin: http://localhost:8080

{"content":"asdf"}



Homework Topics
Request Class
Self.path

POST /api/chats HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Content-Length: 18
Cookie: id=123; theme=dark
Origin: http://localhost:8080

{"content":"asdf"}



Homework Topics
Request Class
Self.http_version

POST /api/chats HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Content-Length: 18
Cookie: id=123; theme=dark
Origin: http://localhost:8080

{"content":"asdf"}



Homework Topics
Request Class
Self.headers

POST /api/chats HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Content-Length: 18
Cookie: id=123; theme=dark
Origin: http://localhost:8080

{"content":"asdf"}



Homework Topics
Request Class
Self.cookies

POST /api/chats HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Content-Length: 18
Cookie: id=123; theme=dark
Origin: http://localhost:8080

{"content":"asdf"}

-Notice that Cookies are Also a Header



Homework Topics
Request Class

Show Request handout code



Homework Topics
Response Class
● Helps you construct a response to send to 

client
● You will construct responses at every 

endpoint you have, this makes your code 
and life easier



Homework Topics
Response Class
__init__()

● Will be called on creation of class
● Create variables that will be used in other 

methods, before finally calling to_data()



Homework Topics
Response Class
set_status()

● Takes an int (code) and a str (text)
● returns self (This will be true for most of 

these methods. Returning a reference to 
the calling object allows you to chain 
together calls)

● Sets the status code and message for the 
response.

● If this method is never called, the code and 
message should default to "200 OK"



Homework Topics
Response Class
headers()

● Takes a dict of str to str
● returns self
● Adds all the key-value pairs from the input 

dict as headers to the response
● If this method is called multiple times, all 

headers across all calls must be part of the 
response



Homework Topics
Response Class
cookies()

● Takes a dict of str to str
● returns self
● Adds all the key-value pairs from the input 

dict as cookies to the response
● If this method is called multiple times, all 

cookies across all calls must be part of the 
response



Homework Topics
Response Class
bytes()

● Takes bytes
● returns self
● Appends the input to the end of the body 

of the response 
● If this method is called multiple times, all 

bytes must be appended to the body. This 
method can be combined with the text 
method 



Homework Topics
Response Class
text()

● Takes a str
● returns self
● Appends the input to the end of the body 

of the response as bytes 
● If this method is called multiple times, all 

text must be appended to the body. This 
method can be combined with the bytes 
method (ie. calling both text and bytes 
should result in the text and bytes from all 
calls appearing in the body as bytes) 



Homework Topics
Response Class
json()

● Takes either a dict or a list 
● returns self
● Set the body of the response to the input 

converted to json as bytes and sets the 
Content-Type to "application/json" 

● This method can only be called once. 
Calling it again should replace the old 
body



Homework Topics
Response Class
to_data(self)

● Does not take any parameters
● returns the entire response in bytes. This is 

the final response that will be sent to the 
client over the TCP socket

● The returned bytes must be properly 
formatted according the HTTP protocol 
and must contain all headers, cookies, the 
status code and message, and the body of 
the response along with the 
Content-Length header



Homework Topics
Response Class

Show Response handout code



Homework Topics
TCP Handler Overview

Show in handout code



Homework Topics
Router Class

● Allows your server to route requests
● Given a certain method and path will call 

a certain function (action)



Homework Topics
Router Class - What that looks like at high level

Browser Router

listChat()

newChat()

deleteChat()



Homework Topics
Router Class - What that looks like at high level

Router

● Browser makes request to your TCP server 
in server.py

Browser

listChat()

newChat()

deleteChat()

GET /api/chats HTTP/1.1



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● API routes
● These aren’t returning files but data from 

functions.
● Will have same path but different method

Browser

GET /api/chats HTTP/1.1



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● Call our function listChat()
● This will return JSON of chats

Browser



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● Call our function listChat()
● This will return JSON of chats

Browser

HTTP/1.1 200 OK

[{"content":"hi","id":"13244"}
,{"content":"yo",id":"25345"}]



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● Now we want a new chat
● Even though same path “/api/chats”, the 

method is now “POST”
● Call correct function newChat()

Browser

POST /api/chats HTTP/1.1

{"content":"sup"}



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● Now we want a new chat
● Even though same path “/api/chats”, the 

method is now “POST”
● Call correct function newChat()

Browser



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● Now we want a new chat
● Even though same path “/api/chats”, the 

method is now “POST”
● Call correct function newChat()

Browser

HTTP/1.1 200 OK



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● If we call list chat again, now have new 
chat “sup”

Browser

HTTP/1.1 200 OK

[{"content":"hi","id":"13244"}
,{"content":"yo","id":"25345"}

,{"content":"sup","id":"78653"}]



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● Now we want to delete last message
● However, we need to specify ID of 

message
● Router needs to support any path with 

variable ID ”/api/chats/{id}”

Browser

DELETE /api/chats/78653 HTTP/1.1

{"content":"sup"}



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat(78653)● Router will pass along the {id}
● Then call use it in the deletechat

Browser

DELETE /api/chats/78653 HTTP/1.1

"content":"sup"}

78653



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● Then Respond 200 its been deleted

Browser

HTTP/1.1 200 OK



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat()● Now that message is gone

Browser

HTTP/1.1 200 OK

[{"content":"hi","id":"13244"}
,{"content":"yo","id":"25345"}]



Homework Topics
Router Class - What that looks like at high level

Router

listChat()

newChat()

deleteChat(25345)● We should be able to put in any id and still 
route to correct function. In this case 
deleteChat

Browser

DELETE /api/chats/25345 HTTP/1.1

"content":"sup"}

25345



Homework Topics
Router Class - What that looks like in code

Recall



Homework Topics
Router Class - What that looks like in code



Homework Topics
Router Class - What that looks like in code

METHOD



Homework Topics
Router Class - What that looks like in code

METHOD PATH



Homework Topics
Router Class - What that looks like in code

METHOD PATH Function to 
call



Homework Topics
Router Class - What that looks like in code

METHOD PATH Function to 
call

Exact Path 
or not



Homework Topics
Router Class - What that looks like in code

- Then when handling new requests
- Route request will look up function to call associated 

with path and method



Homework Topics
Router Class - What that looks like in code

- If “/hello” is requests, call function “hello_path”



Homework Topics
Router Class

Show in handout code



Homework Topics
Router Class

Quick Recap

● Depending on method (GET, POST … DELETE) and Path 
(“/api/chats”). Route to different functions

● Variable routes allowing variables to be passed to 
function /api/chats/{id}
○ /api/chats/25345
○ /api/chats/78653



Homework Topics
Router Class

Now what else do we need router for

● How do we handle static files?
○ Should we add a route for every file?

● What else can variable routes be used for besides chat 
ids?



Homework Topics
Router Class - What that looks like at high level

Router

● We do not add a route for every file
● We can use function that just serves files 

in public folder

Browser

chat.html

chat.js

cat.jpg

servePublic()



Homework Topics
Router Class - What that looks like at high level

Router

● Now for chat.html
● We can route with function, as it starts 

with /public/{somePath}

Browser

chat.html

chat.js

cat.jpg

servePublic()

GET /public/chat.html HTTP/1.1



Homework Topics
Router Class - What that looks like at high level

Router

● Now for chat.html
● We can route with function, as it starts 

with /public/{somePath}
● Server public will see if the file 

./public/chat.html exists and try to open it

Browser

chat.html

chat.js

cat.jpg

servePublic
(chat.html )

GET /public/chat.html HTTP/1.1



Homework Topics
Router Class - What that looks like at high level

Router

● It does, so we open it, read the file's 
contents and return over connection

Browser

chat.html

chat.js

cat.jpg

servePublic
(chat.html )

HTTP/1.1 200 OK

 <p>chat page!</p>



Homework Topics
Router Class - What that looks like at high level

Router

● Now for check js/chat.js
● If it exists return the data
● So on for any file in public folder
● Needs only one route now 

Browser

chat.html

chat.js

cat.jpg

servePublic
(js/chat.js )

GET /public/js/chat.js HTTP/1.1



Homework Topics
Router Class

- Depending on method (GET, POST … DELETE) and Path 
(“/api/chats”). Route to different functions

- Variable routes allowing variables to be passed to 
function /api/chats/{id}
- /api/chats/25345
- /api/chats/78653

- Serving files with router taking use of variable routes



Get things running
● Server receives requests when visiting http://localhost:8080/

○ Hard code response
● How to start database

○ “docker compose -f docker-compose.db-only.yml up --build”
● Demo page

http://localhost:8080/
https://312demo.nico.engineer/

