
CSE 312 Midterm
Review!!!

Web Applications :3

THE INTERNET

• The web is built on top of the internet, which itself is built up of different protocols.

• Internet Protocol (IP) is how we communicate between machines across
the physical cables connecting them.
oHandles routing bytes along routers via IP addresses

• Transmission Control Protocol (TCP) is built on top of IP and establishes ports to
route bytes received from IP to specific processes
oTCP also ensures that the bytes are received in the proper order and that none of them

are dropped.

10/28/2025

2

HTTP

• HyperText Transfer Protocol (HTTP) is built on top of TCP* and is the basis for the
web.

• An HTTP server will listen for HTTP requests and return the appropriate HTTP
responses.

• Example: When a web browser tries to visit a web page, it'll send an HTTP request
to the server for the page, which will be returned in the form of an HTTP response
containing the information the browser needs to render the page.

• Stateless!

10/28/2025

3

HTTP REQUEST FORMAT

10/28/2025

4

[Method] [Path] HTTP/[version]
Header1: Value1
Header2: Value2

[body if present]

HTTP REQUEST LINE: METHODS

• GET: Request data from the server. Idempotent. Body is
insignificant (and should be empty)

• POST: Send data to the server; in other words, submit a
resource. Body is the payload of the request. Can have
side effects.

• PUT: Creates a new resource or replaces
one. Idempotent.

• PATCH: Partially modify/update a resource.

• DELETE: Remove the specified resource. Idempotent.
Body should be empty.

• HEAD: Like GET, but only the headers.

• Others: CONNECT, OPTIONS, TRACE
o Not even mentioned in the slides? Don't care!

10/28/2025

5

[Method] [Path] HTTP/[version]
Header1: Value1
Header2: Value2

[body]

HTTP REQUEST LINE: THE TWO OTHER
THINGS

• Path: The location on the server of the desired
resource, aka everything coming after the port in the
URL.
o May have query strings (key-value pairs appended to

path)

• Version: The version of the HTTP protocol being
spoken.
o So far, the HTTP versions are 1.0, 1.1, 2.0, or 3.0.

o The version being studied in this course is HTTP/1.1

• Everything in the header line is ASCII.

10/28/2025

6

[Method] [Path] HTTP/[version]
Header1: Value1
Header2: Value2

[body]

HTTP RESPONSE FORMAT

10/28/2025

7

HTTP/[version] [code] [message]
Header1: Value1
Header2: Value2

[body]

HTTP RESPONSES

• Sent from the server to client after the server
receives a request.
• The server will never send data to the client

unless it gets a request (client-server model)

• The status code and message indicates the
outcome of the request
• 100-level: informational, 200-level: success,

300-level: redirects, 400-level: client error,
500-level: server error

• Examples: 200 OK, 302 Found, 403 Forbidden,
404 Not Found

10/28/2025

8

HTTP/[version] [code] [message]
Header1: Value1
Header2: Value2

[body]

HTTP HEADERS

• The lines following the request/status line are
headers.

• Take the form of key-values pairs separated by
a colon (:) and (optionally) leading whitespace.

• Each header is separated by two characters: a
carriage return (\r) and a newline (\n).
• We call this \r\n sequence a CRLF

• Headers and their values are represented by ASCII
characters.

10/28/2025

9

[Method] [Path] HTTP/[version]
Header1: Value1
Header2: Value2

[body]

[Method] [Path] HTTP/[version]\r\nHeader1: Value1\r\nHeader2: Value2\r\n\r\n[body]

HTTP/[version] [code] [message]
Header1: Value1
Header2: Value2

[body]

HTTP BODY

• Responses and some request methods have a
body, which is a sequence of bytes following the
blank line delineating the end of the request
headers.

• These are just bytes and have no guarantee of
structure like the rest of the request.
• Cannot assume these bytes represent ASCII

characters like with the rest of the request
• Cannot assume \r\n is meaningful in these bytes.

• The length of the body in bytes is indicated by the
Content-Length header.

• The MIME type of the body should be indicated by
the Content-Type header.

10/28/2025

10

[Method] [Path] HTTP/[version]
Content-Length: [length]
Content-Type: [type]

[body]

HTTP/[version] [code] [message]
Content-Length: [length]
Content-Type: [type]

[body]

MIME TYPES

• Since the payload in HTTP messages is just bytes, the Content-Type header is used
to indicate to the browser (and server) what to expect these bytes to be.
• Examples: application/json, text/plain, video/mp4

• Many browsers implement MIME type sniffing which infers the "correct" MIME
type of files even if it contradicts the Content-Type header.
• This can open security vulnerabilities, and can be disabled by the X-Content-Options

header being set to "nosniff"

10/28/2025

11

COOKIES

• Since HTTP is stateless, Cookies are used to
replicate having state.

• Responses can send Set-Cookie headers to tell the
client to remember information in the form of
key-value pairs.
• Cookies sent by the server can contain directives,

indicating more information about when the client
should send the cookie and when it should be
discarded.

• Any* future requests to this site after a response
sets a Cookie will contain the cookies that were
previously set by the server in the Cookie request
header.
• Directives are not sent as they are only important

for the browser.
• Based on the directives set, Cookies may or may not

be sent.

10/28/2025

12

HTTP/1.1 302 Found
Set-Cookie: session=c8100039; Max-Age=7200
Set-Cookie: auth=fde7dee2; Max-Age=172800
Content-Length: 4
Content-Type: text/plain
Location: /

yeah

GET / HTTP/1.1
User-Agent: Mozilla/5.0
Cookie: session=c8100039; auth=fde7dee2

GET /set-cookies HTTP/1.1
User-Agent: Mozilla/5.0

DATABASES

 Web applications utilize databases to store data.

 Databases provide an API to our app to store data without having to handle it on a
low level.

 Run as a separate service to our application with its own port.
oCare should be taken not to expose this port to the outside world; users should only be

able to access the database through interacting with our API.

 Vary in format:
oMongoDB doesn't enforce structured data

oSQL implementations enforce tables with structured columns

10/28/2025

13

CRUD

• Our server's interactions with the database can be summarized with the acronym
CRUD:

• Create: Create a new record, like a new user or new message.
• insert_one in Mongo

• Retrieve: Retrieve a single record, typically we used an ID to identify a record.
• find_one in Mongo

• Update: Update a record that already exists.
• update_one in Mongo

• Delete: Remove an existing record (or at least, make inaccessible)
• delete_one in Mongo

• (List): Retrieve all records
• find in Mongo

10/28/2025

14

API

• Users don't interact with the database directly for many reasons and will
instead interact with the endpoints we control.
• We will then handle the database operations on their behalf based on the

request they send

• The request methods correspond to different operations for our server
(see previous slide on methods).
• Some methods (e.g., GET, DELETE, PUT) are required to be idempotent;

that is, multiple identical requests must have the exact same result on the
server.

• POST requests are not required to be idempotent; for example, two POST
requests creating identical users is permitted to result in two different
users with different IDs.

• Not abiding by these meanings is a violation of the HTTP protocol;
however, a server that misuses them can still be functional. It's up to the
implementer of the server to be correct.

10/28/2025

15

REST API

• Set of guidelines and constraints to simplify APIs.

• Client-Server Architecture
• Clients and servers are separate; clients interact with the server

through an interface.

• Stateless
• The client only interacts with the server and vice versa when the

client queries it to.

• Cache
• If a response can be cached, this should be indicated to avoid

wasteful requests.

10/28/2025

16

REST API

• Layered-System:
• There can be layers between the server and client (e.g., VPNs,

HTTPS) and usability shouldn't be impacted.

• Uniform Interface:
• All necessary resources/information for a request to be fulfilled are

contained in the request and response.

• That is, the API should be self-contained and not reliant on anything
except itself.

10/28/2025

17

DOCKER

• Create lightweight containers to run services for application.

• Not a full VM*. All containers share a kernel and emulate their own file
system.

• Many benefits for development:
• Consistent environment across different machines

• Isolates your application from the hardware running it (security)

• Can automate starting up other necessary services via Docker Compose

• Easier configuration; e.g., setting up a service for development and
another one for production with different parameters set

10/28/2025

18

PASSWORD SECURITY

• Hashing: Passwords are hashed by a cryptographic hash function that is
difficult to reverse, preventing passwords from being read by
anyone with access to the database.
• When a user attempts to log in, the password they provide is hashed

and compared against the hash stored in the database.

• Salting: Random high-entropy strings are appended to the end of
passwords upon registration before hashing, which allows the same
password to have different hashes.
• For example, this prevents someone from compiling a list of hashes for

common passwords and using it to reverse-engineer passwords after a
database leak.

• Salts need to be stored in the database so the same hash can be
computed when a user tries to log in. Since it's server-generated, there's
no benefit to hashing the salt.

• Knowing the salt doesn't make it any easier to reverse the hash.

10/28/2025

19

HASHING AND SALTING

1. A user creates an account with the terrible password "passw0rd".

2. Our server generates the string "tIbyrikpPOXyFk" and appends it to
"passw0rd" to get "passw0rdtIbyrikpPOXyFk".

3. Our server hashes that to get
"3e2c023c1e6a37e230298259daa010230d8ec93c8a6c9402daa046b9
325552e4"

4. Our server stores that hash and tIbyrikpPOXyFk in that user's entry in
the database.

5. When someone tries to log in to that account, the password they
provide has tIbyrikpPOXyFk appended to the end of it before it is
hashed

6. The hash generated in step 5 is compared to the hash from step 3; if it
matches, let the user in, otherwise, do not grant access to this user.

10/28/2025

20

10/28/2025

Without Salting:

With Salting:

• With uppercase/lowercase A-Z, 0-9, and 10 special characters, the upper bound on how
many tries it would take to crack the salted password
is 73,686,693,514,075,155,594,934,859,127,831,072,888,456.

• The unsalted password would have an upper bound of 732,376,025,552,520 tries , but since
it's not salted and all the common passwords have been precomputed, it only took 175 tries.

AUTH TOKENS

 When a user successfully logs in, we can create an identifier for their
session called an authentication token.

 This is typically some high entropy string generated when the user logs in
and set as a cookie.

 At the same time, we can hash this string and store it in our database.
Future requests from this user will have this authentication token in the
Cookies, so we can hash it and compare it against what we have in the
database to authenticate them rather than requiring a password.
o The unhashed auth token should not be stored in the server, and since we

generate the auth token there's no reason to salt it.

 Security: Since this grants access to a user account, it needs to be treated
carefully: hashed in the database, appropriate directives set (Max-
Age, httponly). Old auth tokens need to be invalidated server-side to
prevent impersonation.

10/28/2025

22

XSRF

• Other sites can make requests to your application, which without
protections our server would have no way of differentiating from
requests made by our application.
• Example: You could have a POST route to transfer money from a

user's account; another website could use AJAX to access that route.

• Preexisting protections:
• Referrer header indicates where the request came from, but this

can be spoofed.

• SOP stops these requests from being made on the client-side; but
allows all GET requests and POST requests from form submissions.

• SameSite cookie directive determines when cookies are sent on 3rd
party requests, but can affect usability of your app.

10/28/2025

23

XSRF TOKENS

• On page load, generate a long high entropy token.

• Embed this in the page and store it in your database associated with the user.

• Have the frontend send this token on form submissions (by adding it as a hidden
input to the form) to verify that these requests truly came from us.

• If you want to allow cross-site requests (like if you're making an API that other apps
can use) you can do so through CORS by setting the Access-Control-Allow-Origin
header

10/28/2025

24

OAUTH 2.0

• Standard to safely use 3rd party APIs to act on a user's behalf.
• E.g., log in with Google, track Spotify listening

• When you register your app with an OAuth provider, provide them a location to
redirect users to and they will provide you with a client ID (public) and a client
secret (...secret)

10/28/2025

25

OAUTH 2.0 SUMMARIZED PROCESS

1. You ask the user to authorize with the provider

2. The user authorizes with the provider and permits access to the
requested scopes

3. The user gets a grant containing an authorization code

4. The user provides you with the grant via the redirect URI

5. You (not the user!) use the authorization code the user provided to
request the user's access token

6. The provider sends you a response containing the access token

7. You now can use this access token to make requests on their behalf.
(But never let this token out of your server, even to the user it
corresponds to!)

10/28/2025

26

10/28/2025

27

FILE UPLOADS

• To allow uploading files in HTML forms, we set the
encoding type to "multipart/form-data"
• Otherwise, the POST request will only contain the

filenames...

• The Content-Type of the POST request will indicate
a boundary for each component of the form data,
which supports transmitting arbitrary streams of
bytes.

• These boundaries have headers like HTTP
messages, and similarly the body of the boundary is
separated by a blank line (\r\n).

10/28/2025

28

PARSING MULTIPART

• Similar considerations to parsing HTTP
messages should be made when parsing
multipart as well:
• The contents of each part should not be

decoded until they've been separated from
the rest of the request, and you know what
the encoding type is.

• \r\n is only significant in the headers! In the
body of the parts in non-text-based
encodings, these are just bytes and not
necessarily less likely to appear than any
other sequence of two bytes.

• Decoding images as UTF-8 will most likely
make it permanently unreadable.

10/28/2025

29

BUFFERING

• When we read from a TCP socket, we may or may not receive the entire HTTP
request in a single call to recv (especially when we allow file uploads)

• Thus, we may need to buffer requests, which entails continually calling recv until
we have assembled the entire request.

• We can use the Content-Length header for this purpose (however; keep in mind
this is not the length of the HTTP request; rather, it is the length of the body)

10/28/2025

30

MEDIA PROCESSING

• Typically, we don't want to serve the exact files user uploads for several reasons
(such as storage space).

• To that end, we typically process media to compress it or re-encode it in a
consistent format based on our needs.

• FFmpeg is an open-source tool to accomplish just this, and has an extensive
number of tools to process media files and is used virtually everywhere.

10/28/2025

31

ffmpeg -i inputVideo.avi -s 640x360 -f mp4 outputVideo.mp4

ADAPTIVE BITRATE

• To account for the variety of internet speeds different users of the site may have,
it's common practice to encode media content in multiple resolutions.

• This allows users with poor internet connections to access the content while
allowing users with fast internet connections to access this content in high-quality.

• HLS and MPEG-DASH are two formats that split videos into segments and employ
index files to allow resolutions to be switched on the fly.

10/28/2025

32

WEBSOCKETS

• Enable two-way real time communication between the client and server on the
web
• Through HTTP, the server can only send data to the client in response to a request,

WebSockets don't have this same restriction!

• Once the client requests to use the WebSocket protocol, the client and server
engage in a handshake establishing this connection.

• After this, the connection between the client and server is kept open and messages
are free to flow.

10/28/2025

33

WEBSOCKET HANDSHAKE

10/28/2025

34

GET /websocket HTTP/1.1
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Client Request:

sha1(key + "258EAFA5-E914-47DA-95CA-C5AB0DC85B11") = 0xB37A4F2CC0624F1690F6406CF385945B2BEC4EA
base64(0xB37A4F2CC0624F1690F6406CF385945B2BEC4EA) = "s3pPLMBiTxaQ9kYGzzhZRbK+xOo="

Server Response:

Example Source: MDN Docs

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

WEBSOCKET FRAMES

• WebSocket frames have much less
overhead than HTTP

• Specify information including:
• Whether or not this is the last frame of

the message

• Type of message (text,
binary, close, ping/pong)

• The length of the payload

• If there is a mask, and what the masking
key is

10/28/2025

35

WEBSOCKET LENGTH

• If the 7 bits following the mask bit are less than 126,
this is the number of bytes in the payload of this
frame.

• If the 7 bits following the mask bit are exactly 126,
the number of bytes in the payload are determined by
the following two bytes.

• If the 7 bits following the mask bit are exactly 127, the
number of bytes in the payload are determined by the
following eight bytes.

• These bytes are big-endian.

• With a maximum
length of 9,223,372,036,854,775,807, servers must
also buffer bytes received from WebSockets as with
HTTP messages as they can be larger than a call to recv.

10/28/2025

36

PAYLOAD MASK

• If the MASK bit is 1, then there will be a four-byte mask key following the payload
length.

• To parse the payload data, the payload data should be read in chunks of four-bytes
and XORed with the mask as it's reassembled.

10/28/2025

37

	Slide 1: CSE 312 Midterm Review!!!
	Slide 2: THE INTERNET
	Slide 3: HTTP
	Slide 4: HTTP Request Format
	Slide 5: HTTP Request Line: Methods
	Slide 6: HTTP Request Line: The two other things
	Slide 7: HTTP Response Format
	Slide 8: HTTP Responses
	Slide 9: HTTP Headers
	Slide 10: HTTP Body
	Slide 11: MIME Types
	Slide 12: Cookies
	Slide 13: Databases
	Slide 14: CRUD
	Slide 15: API
	Slide 16: REST API
	Slide 17: REST API
	Slide 18: Docker
	Slide 19: Password Security
	Slide 20: Hashing and Salting
	Slide 21
	Slide 22: Auth Tokens
	Slide 23: XSRF
	Slide 24: XSRF Tokens
	Slide 25: OAuth 2.0
	Slide 26: OAuth 2.0 Summarized Process
	Slide 27
	Slide 28: File Uploads
	Slide 29: Parsing Multipart
	Slide 30: Buffering
	Slide 31: Media Processing
	Slide 32: Adaptive Bitrate
	Slide 33: WebSockets
	Slide 34: WebSocket Handshake
	Slide 35: WebSocket Frames
	Slide 36: WebSocket Length
	Slide 37: Payload Mask

