
HTTP Overview

Network Stack (A simplified view)
● Enter HTTP

Packet Structure

IP Headers

TCP Headers

HTTP Headers

Content

HTTP - Documentation
• HTTP/1.1 is defined by RFC2616 of the IETF

• https://tools.ietf.org/html/rfc2616

• This is THE document for all your questions about HTTP

• Today we'll discus topics in sections 4, 5, and 6

• RFC

• Request For Comments

• Submit an RFC for public discussion or to publish information

• IETF

• Internet Engineering Task Force

• Adopts some RFC's as Internet standards

https://tools.ietf.org/html/rfc2616

HyperText Transfer Protocol (HTTP)
● HTTP is an application layer protocol
○ Protocols used by our applications
○ Protocols that are not concerned with the transmission of data

● [Almost] Always uses TCP for reliable communication
○ Always in this course

HTTP
● HTTP is a protocol used to access content from a web server
● Protocol: An agreed upon set of rules
○ HTTP: Defines the format of messages sent to/from a web server

● HTTP is a Request - Response protocol
○ Client makes request to server
○ Server returns a response
○ Ex. Request The latest tweets from a user. Twitter server returns the

tweets in its response

● Response may require more requests
○ Ex. Get HTML which requires CSS/JS/Images

Web Server
● Software that "speaks" HTTP
● Listens for HTTP requests and responds with HTTP responses
● We want to host our web pages/apps on the Internet using

HTTP

● Terminology:
○ Front End - The part a web app that runs in the browser (HTML/CSS/JS)
■ The front end will send HTTP requests to the back end

○ Back End - The web server and all software that does not run on the
user's machine
■ The back end will will send HTTP responses to the front end

Loading a Web Site

Browser Web Server

Network (Internet)

Front End Back End

1. Request HTML

2. Sends HTML

3. Request Each url in HTML

4. Sends Content

5. Browser renders all content
and runs JavaScript

HTTP Request
● Each HTTP request will contain the request type:
○ GET: Request information from a server
○ POST: Send information to a server
○ PUT: Add information to a service
○ PATCH: Partial update of existing data
○ DELETE: Delete information from a service
○ HEAD: Request only the headers of a response

● To start, we'll focus on GET and POST only

HTTP Request
● HTTP GET Request
○ Used when requesting content from a server
○ [Typically] Only contains a URL and HTTP headers
○ When you click a link, your browser makes a GET request
○ Requesting HTML/CSS/Javascript/Images/etc are GET requests

● HTTP POST Request
○ Used when sending data to a website
○ Contains a URL and a body [And HTTP headers]
○ When you submit a form, your browser [typically] makes a POST

request
○ The contents of the form are sent in the body of the request

HTTP Request
Protocol://host:port/path?query_string#fragment
● Each request is made for a specific URL (Uniform Resource

Location)
○ A URL uniquely identifies a resource and has the following parts

● Protocol - The protocol being used (ex. file, HTTP, HTTPS, FTP)
● Host - The IP address or domain name of the server
○ Used to route the request to the appropriate machine

● Port - The TCP port number of the host server
○ Defaults to 80/443 for HTTP/HTTPS respectively

● Path - Specifies the specific resource being requested from the
server

HTTP Request
Protocol://host:port/path?query_string#fragment
● Query String - [Optional] Contains key-value pairs set by the client
● https://www.google.com/search?q=web+development
○ HTTPS request to Google search for the phrase "web development"

● https://duckduckgo.com/?q=web+development&ia=images
○ An HTTPS request to Duck Duck Go image search for the phrase "web development"

● Fragment - [Optional] Specifies a single value commonly used for
navigation

● https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
○ HTTPS Request for the URI Wikipedia page

● https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Definition
○ HTTPS Request for the URI Wikipedia page that will scroll to the definition of URI

https://www.google.com/search?q=web+development
https://duckduckgo.com/?q=web+development&ia=images
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Definition

HTTP
● HTTP is a stateless protocol
● Each request is handled in isolation even if a client just made another

request
● If state is desired (ex. Login), the state must be sent with each request
● Cookies

● When handling an HTTP request, do not have to care who sent it

https://xkcd.com/869/

https://xkcd.com/869/

New Lines
• A new line character in an HTTP request/response must be:

• "\r\n"

• Carriage return (From the days of typewriters)

• New line

• In the documentation this is referred to as a CRLF

• CRLF == Carriage Return Line Feed

• Be aware of this while parsing

• Use "\r\n" for new lines when preparing your responses

HTTP GET Request

GET Request
• We'll use this simple request as an example

GET / HTTP/1.1
Host: cse312.com
Connection: keep-alive
Accept-Language: en-US,en

GET Request
• More accurately, it will be this

• In the slides, we'll render "\r\n" as a new line

• Note that there is a blank line at the end of the request

GET / HTTP/1.1\r\nHost: cse312.com\r\nConnection: keep-alive\r\nAccept-Language: en-US,en\r\n\r\n

GET / HTTP/1.1
Host: cse312.com
Connection: keep-alive
Accept-Language: en-US,en

The Request Line
• The first line of the request is always the request line

• The request line has 3 values separated by spaces

• The request type (GET/POST/PUT/DELETE/etc)

• The path of the request (ex. "/") - Everything after the port
in the requested url

• The HTTP Version

• We'll always use HTTP/1.1 in this course

The Request Line
• Parse the request line by looking for the 2 space characters

• Separate the values and check the strings

• Typically: When the root path "/" is requested, serve the HTML of
your home page

• By convention, web servers look for index.html to serve at the root
path

• If the url contains a different path, it will appear in the request line

GET / HTTP/1.1
Host: cse312.com
Connection: keep-alive
Accept-Language: en-US,en

GET /static_files/slides/1_2_HTTP.pdf HTTP/1.1
Host: cse312.com
Connection: keep-alive
Accept-Language: en-US,en

http://cse312.com/ http://cse312.com/static_files/slides/1_2_HTTP.pdf

Headers
• Following the request line are any number of headers

• HTTP Headers

• Key-Value pairs

• Key and value separated by a colon ":"

• Each header will be on a new line (look for \r\n)

• To parse, look for the colon ":" and read the key and value

• There is an optional space after the colon which should be removed if
present <-- don't forget to do this! Leaving in the space will cause bugs
that are very difficult to detect

GET / HTTP/1.1
Host: cse312.com
Connection: keep-alive
Accept-Language: en-US,en

HTTP Response

Response
• Your web server will listen for HTTP requests over the TCP

sockets and respond with HTTP responses

• Send a response back to the client to serve them the
requested content

• This response will display "hello" in their browser

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 5

hello

Response
• More accurately, this is the response

HTTP/1.1 200 OK\r\nContent-Type: text/plain\r\nContent-Length: 5\r\n\r\nhello

Status Line
• The first line of the response must be the status line

• Status line contains 3 values separated by spaces

• The HTTP version

• The status code

• The status message (Reason phrase in docs)

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 5

hello

Response Codes
• Tells the browser the nature of the response

• 200-level codes: Everything went well

• 300-level codes: Redirect the request

• 400-level codes: Error caused by the client

• 500-level codes: Error caused by the server

• Include a human readable message

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 5

hello

Response Headers
• The headers in the response follow the same format as

request headers

• Should have at least two headers

• Content-Type - Tells the browser how to parse this
content

• Content-Length - How many bytes should be read from
the body of the response

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 5

hello

Blank Line
• There is a blank line (\r\n\r\n) separating the headers and

the body of the response

• The blank line is very important

• It tells the browser that you're done with headers and the
next bytes will be the body of the response

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 5

hello

Body
• After the blank line are the bytes of the body

• The body contains the content that is being served

• The number of bytes in the body exactly match the value of
the Content-Length header

• The browser will read exactly this many bytes

• Note: There is no required format for the body. The format
depends on the type of content being served

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 5

hello

404 Not Found
• If a path is requested that your server does not handle

• Respond with a 404 Not Found

• Note: Spaces are allowed in your reason message

• The response format is the same as a 200 response

• Include content type and length

• Include a body that will be displayed to the client

HTTP/1.1 404 Not Found
Content-Type: text/plain
Content-Length: 36

The requested content does not exist

