
Encodings
MIME types and bytes



1's and 0's
• The Internet can only transfer bits


• Copper: High/Low voltage


• Fiber: Light/Dark


• All data sent over the Internet must be binary


• How do we know what these 1's and 0's represent in HTTP? 

• Encodings and MIME Types



Encoding Text



Text

• Only 1's and 0's can travel through the Internet


• How do we send text?



ASCII
•Character encoding

•Maps characters to numbers

•Numbers are represented in bits

•Bits are sent through the Internet

•Numbers are mapped back to characters 

by the receiver


• ASCII uses 7 bit encodings





ASCII
• As a String:


• "hello"


• Programming language specific representation


• In Hex:


• 68 65 6c 6c 6f


• Need to encode the String into a byte representation


• In Binary:


• 01101000 01100101 01101100 01101100 01101111


• Send this over the Internet



HTTP Headers

HTTP Headers can only contain 
ASCII characters



HTTP Headers

• When reading HTTP headers [And request/status lines]


• Assume it is text encoded using ASCII


• The body of the request/response may be encoded 
differently 


• Read the headers to find the encoding for the body



Character Encodings
• ASCII can only encode 128 different characters


• Decent enough for english text


• Unusable for languages with different alphabets


• With the Internet, the world became much more connected


• Too restrictive for each alphabet to have its own encoding


• How do we encode more characters with a single standard?


• We need more bits!


• Enter UTF-8



UTF-8
• The modern standard for encoding text


• Uses up to 4 bytes to represent a character


• If the first bit is a 0


• One byte used. Remaining 7 bits are ASCII


• All ASCII encoded Strings are valid UTF-8

Source: Wikipedia



UTF-8
• If more bytes are needed:


• Lead with 1's to indicate the number of bytes


• Each continuation byte begins with 10


• Prevents decoding errors


• No character is a subsequence of another character

Source: Wikipedia



Sending Data
• When sending Strings over the Internet


• The Internet does not understand language-specific Strings


• Always convert to bytes/bits before sending


• Encode the String using UTF-8


• When receiving text over the Internet


• It must have been sent as bytes/bits


• Must convert to a language-specific String


• Decode the bytes using the proper encoding



Sending Data
• Use the Python methods


• .encode()


• .decode()


• You can specify the encoding as an argument of these 
methods


• Default is UTF-8 so providing no arguments will do what you 
want for this course



Content Length
• Content-Length header must be set when there is a body to a 

response/request


• Value is the number of bytes contained in the body


• Bytes referred to as octets in some documentation


• If all your characters are ASCII


• This is equal to the length of the String


• Any non-ASCII UTF-8 character uses >1 byte


• Cannot use the length of the String as your Content-Length!



Content Length

• To compute the content length of a UTF-8 
String

• Convert to bytes first

• Get the length of the byte array



MIME Types



MIME Types
• When an HTTP response [or request] contains a body, the 

body is an array of bytes


• There's no restriction on the encoding used for these 
bytes (Cannot always assume ASCII/UTF-8)


• Set a Content-Type header to tell the browser what those 
bytes represent


• Tells the browser how to read the body of your response


• This is the MIME type of the data



MIME Types
• MIME type


• Multipurpose Internet Mail Extensions


• Developed for email and adopted for HTTP


• Two parts separate by a /


• <type>/<subtype>


• Common types


• text - Data using a text encoding (eg. UTF-8)


• image - Raw binary of an image file


• video - Raw binary of a video



MIME Types
• Common Type/Subtypes


• text/plain


• text/html


• text/css


• text/javascript


• image/png


• image/jpeg


• video/mp4


• application/json



MIME Types
• Optional settings can be added to the Content-Type header


• Separate options by a ;


• Options are formatted as <name>=<value>


• Content-Type: text/html; charset=utf-8


• The content is HTML encoded using UTF-8


• *You must use this to tell the browser that you are using utf-8


• Don't forget to add this exactly as it appears. One character 
difference will break your page



MIME Type Sniffing
• Modern browsers will "sniff" the proper MIME type of a response


• If the MIME type is not correct, the browser will "figure it out"™ 
and guess what type makes the most sense


• Browsers can sometimes be wrong


• Surprises when your site doesn't work with certain versions of 
certain browsers


• Best practice is to disable sniffing


• Set this HTTP header to tell the browser you set the correct 
MIME type


• X-Content-Type-Options: nosniff



MIME Type Sniffing
• X-Content-Type-Options: nosniff


• Be sure to set this header properly!


• Open the browser console


• Check the headers of your response


• Make sure this header was parsed by the browser



MIME Type Sniffing
• Security concern: 

• You have a site where users can upload images


• All users can view these images


• Instead of an image, a user uploads JavaScript that steals 
personal data


• You set the MIME type to image/png


• The browser notices something is wrong and sniffs out the 
MIME type of text/javascript and runs the script


• You just got hacked! 

• Solution:


• X-Content-Type-Options: nosniff



MIME Types
• With the proper MIME types set through a Content-Type 

header


• The browser will know how to parse and render the body 
of your HTTP response


• When receiving an HTTP request that contains a body


• The Content-Type will be set to let our server know the 
MIME type



Sending Images



Sending Images
• Sometimes we want to send data that is not text


• Use different formats depending on the data


• To send an image


• Read the bytes from the file


• Send the bytes as-is


• Content-Length is the size of the file


• Set the Content-Type to image/<image_type>



Sending Images
• When sending images


• Since the data is already in bytes when the file is 
read, no need to encode/decode


• Never try to read an image file as a string


• Never try to decode the bytes of an image into a 
string


• An image is not encoded using UTF-8


• The bytes will not decode properly



Sending Images
• Don't overthink sending images


• Read the bytes of the file. That's the body of your 
response

• You may have to specify that the file should be read as a byte 

array since text is often assumed in File IO examples


• Set the Content-Length to the length of the byte 
array


• Set the appropriate MIME type in Content-Type


• Ex: to send a .png the MIME type is "image/png"


