=pledole[[gle[S

MIME types and bytes

1'sand O's

e The Internet can only transfer bits
e Copper: High/Low voltage
e Fiber: Light/Dark

e All data sent over the Internet must be binary

e How do we know what these 1's and 0's represent in HTTP?

e Encodings and MIME Types

Encoding Text

e Only 1's and O's can travel through the Internet
e How do we send text?

ASCII

e Character encoding
* Maps characters to numbers
* Numbers are represented in bits
e Bits are sent through the Internet

e Numbers are mapped back to characters
by the receiver

e ASCI| uses 7 bit encodings

Hx Oct Char Dec Hx Oct Dec Hx Oct Html Chr| Dec Hx Oct Html Chr

000 NUL (null) 32 20 040 64 40 100 @ 96 60 140 `
001 S0H (start of heading) 33 21 041 . 65 41 101 A 97 61 141 a
002 5TX (start of text) 34 22 042 66 42 102 B 98 62 142 b

003 ETX (end of text) 35 23 043 # 67 43 103 &«#67; 99 63 143 '
004 EOT (end of transmission) 36 24 044 68 44 104 D 100 64 144 &«#100;

005 ENQ (enquiry) 37 25 045 69 45 105 E 101 65 145 e
006 ACK (acknowledge) 38 26 046 70 46 106 F 102 66 146 f
007 BEL (bell) 39 27 047 71 47 107 G 103 67 147 g
010 BES (backspace) 40 28 050 72 43 110 H 104 68 150 h
011 TAE (horizontal tab) 4] 29 051 73 49 111 I 105 69 151 i
0l2 LF (NL line feed, new line)| 42 24 052 g 74 44 112 &«#74; 106 64 152 j
013 VT (wvertical tab) 43 2B 053 75 4B 113 K 107 6B 153 k
014 FF (NP form feed, new page)| 44 2C 054 76 4C 114 L 108 6C 154 &«#1083;
015 CR (carriage return) 45 2D 055 77 4D 115 M 109 6D 155 m
0l6 S0 (shift out) 46 2E 056 . 76 4E 116 N 110 6E 156 n
017 SI (shift in) 47 2F 057 79 4F 117 O 111 6F 157 &#lll;
020 (data link escape) 43 30 060 80 50 120 2 112 70 160 lZ;
021 (device control 1) 49 31 06l 81 51 121 Ʌ 113 71 161 q
022 (device control 2) 50 32 062 82 52 122 &«#82; 114 72 162 l14;
023 (device control 3) 51 33 063 83 53 123 &«#383; 115 73 163 s
024 (device control 4) 52 34 064 84 54 124 &«#64; 116 74 164 t
025 (negative acknowledge) 53 35 065 85 55 125 U 117 75 165 l17;
026 (synchronous idle) 54 36 066 86 56 126 V 118 76 166 ҟ
027 (end of trans. block) 55 37 067 87 57 127 W 119 77 167 w
030 (cancel) 56 38 070 88 58 130 X 120 78 170 x
031 (end of medium) 57 39 071 89 59 131 Y 121 79 171 &«#lZ2l; ¥
032 (substitute) 58 34 072 : 90 54 132 &«#°90; 122 74 172 &#l22; Z
033 (escape) 59 3B 073 ; 91 5B 133 [123 7B 173 { |

I

}

W oo b+ OoO

RN aHOD OO EOO D@

e
[

0
1
Z
3
4
5
6
7
g
<
A
B
C
D
E
i

S e g cturr T O 0 E RSO D AA0 T

WO O - o b WO ™

034 (file separator) 60 3C 074 92 S5C 134 \ 124 7C 174 &«#lZ4;

035 (group sSeparator) 61 3D 075 93 5D 135] 125 7D 175 }

036 (record separator) 62 3E 076 94 SE 136 ^ 126 7E 176 &#li6; ~
037 (unit separator) 63 3F 077 - 95 S5F 137 &«#95; 127 7F 177 «#127; DEL

Source: www.LookupTables.com

P I N KOO0 9O

ASCII

e As a String:

e "hello"

e Programming language specific representation
e |n Hex:

e 68 65 6¢C 6C Of

e Need to encode the String into a byte representation
e |n Binary:

e 01101000 01100101 01101100 01101100 01101111

e Send this over the Internet

H1 TP Headers

HI TP Headers can only contain
ASCI| characters

H1 TP Headers

e When reading HT TP headers [And request/status lines]

e Assume it is text encoded using ASCII

e The body of the request/response may be encoded
differently

e Read the headers to find the encoding for the body

Character Encodings

e ASCII can only encode 128 different characters
e Decent enough for english text
* Unusable for languages with different alphabets
e With the Internet, the world became much more connected

* Joo restrictive for each alphabet to have its own encoding

e How do we encode more characters with a single standard??

e \We need more bits!
e Enter UTF-8

UTF-8

e The modern standard for encoding text
e Uses up to 4 bytes to represent a character
e |fthefirstbitisaO
e One byte used. Remaining 7 bits are ASCII
e All ASCIl encoded Strings are valid UTF-8

Number @ Bits for First Last
of bytes code point code point code point

Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+0000 U+007F 0xxxxxxXX
2 U+0080 U+07FF | 110xxxxx | 10XXXXXX
3 U+0800 U+FFFF 1110xxxx 10xxxxxX 10XXXXXX

4 U+10000 U+10FFFF | 11110xxx | 10xxxxxX | 10xxxxxXX 10XXXXXX

UTF-8

e |f more bytes are needed:
e | ead with 1's to indicate the number of bytes
e Each continuation byte begins with 10
e Prevents decoding errors

e No character is a subseqgquence of another character

Number @ Bits for First Last
of bytes code point code point code point

Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+0000 U+007F 0xxxxxxXX
2 U+0080 U+07FF | 110xxxxx | 10XXXXXX
3 U+0800 U+FFFF 1110xxxx 10xxxxxX 10XXXXXX

4 U+10000 U+10FFFF | 11110xxx | 10xxxxxX | 10xxxxxXX 10XXXXXX

Sending Data

e \When sending Strings over the Internet
e The Internet does not understand language-specific Strings
e Always convert to bytes/bits before sending
e Encode the String using UTF-8

e \When receiving text over the Internet
e |t must have been sent as bytes/bits
e Must convert to a language-specific String

e Decode the bytes using the proper encoding

Sending Data

e Use the Python methods
e .encode()

e .decode|)

e You can specify the encoding as an argument of these
methods

e Default is UTF-8 so providing no arguments will do what you
want for this course

Content Length

Content-Length header must be set when there is a body to a
response/request

Value is the number of bytes contained in the body

e Bytes referred to as octets in some documentation

If all your characters are ASCI|
e This is equal to the length of the String
Any non-ASCII UTF-8 character uses >1 byte

e Cannot use the length of the String as your Content-Length!

Content Length

 To compute the content length of a UTF-8
String

e Convert to bytes first
e Get the length of the byte array

MIME Types

MIME Types

e When an HTTP response [or request] contains a body, the
body is an array of bytes

e There's no restriction on the encoding used for these
bytes (Cannot always assume ASCII/UTF-8)

e Set a Content-Type header to tell the browser what those
bytes represent

e Jells the browser how to read the body of your response

e This is the MIME type of the data

MIME Types

e MIME type
e Multipurpose Internet Mail Extensions
e Developed for email and adopted for HTTP
e Two parts separate by a/
e <type>/<subtype>
e Common types
e text - Data using a text encoding (eg. UTF-8)
e image - Raw binary of an image file

e video - Raw binary of a video

MIME Types

e Common Type/Subtypes
e text/plain
e text/html
e text/css
e text/javascript
e Image/png
e Image/jpeg
e video/mp4

e application/json

MIME Types

e Optional settings can be added to the Content-Type header
e Separate options by a;

e Options are formatted as <name>=<value>

e Content-Type: text/html; charset=utf-8
e The content is HTML encoded using UTF-8
e “You must use this to tell the browser that you are using utf-8

e Don't forget to add this exactly as it appears. One character
difference will break your page

MIME Type Sniffing

Modern browsers will "sniff" the proper MIME type of a response

e |f the MIME type is not correct, the browser will "figure it out" ™
and guess what type makes the most sense

Browsers can sometimes be wrong

e Surprises when your site doesn't work with certain versions of
certain browsers

Best practice is to disable sniffing

Set this HT TP header to tell the browser you set the correct
MIME type

e X-Content-Type-Options: nosniff

MIME Type Sniffing

e X-Content-Type-Options: nosniff
e Be sure to set this header properly!
e Open the browser console
e Check the headers of your response

e Make sure this header was parsed by the browser

MIME Type Sniffing

e Security concern:
e You have a site where users can upload images
e All users can view these images

e |nstead of an image, a user uploads JavaScript that steals
personal data

e You set the MIME type to image/png

e The browser notices something is wrong and sniffs out the
MIME type of text/javascript and runs the script

e You just got hacked!
e Solution:

e X-Content-Type-Options: nosniff

MIME Types

e With the proper MIME types set through a Content-Type
header

e The browser will know how to parse and render the body
of your HT TP response

e \When receiving an HT TP request that contains a body

e The Content-Type will be set to let our server know the
MIME type

Sending Images

Sending Images

e Sometimes we want to send data that is not text

e Use different formats depending on the data

[0 send an image
e Read the bytes from the file
e Send the bytes as-is
e Content-Length is the size of the file

e Set the Content-Type to image/<image_type>

Sending Images

e \When sending images

e Since the data is already in bytes when the file is
read, no need to encode/decode

* Never try to read an image file as a string

* Never try to decode the bytes of an image into a
string

e An image Is not encoded using UTF-8

 [he bytes will not decode properly

Sending Images

e Don't overthink sending images

e Read the bytes of the file. That's the body of your
response

e You may have to specify that the file should be read as a byte
array since text is often assumed in File IO examples

e Set the Content-Length to the length of the byte
array

e Set the appropriate MIME type in Content-Type
e EX: to send a .png the MIME type is "image/png"

