
HTTP POST

POST Request
• A POST request, or any request containing a body, will be

formatted similar to your HTTP responses

POST /path HTTP/1.1
Content-Type: text/plain
Content-Length: 5

hello

POST Request
• More accurately

POST /path HTTP/1.1\r\nContent-Type: text/plain\r\nContent-Length: 5\r\n\r\nhello

POST Request
• When parsing, there will be Content-Length and

Content-Type headers

POST /path HTTP/1.1\r\nContent-Type: text/plain\r\nContent-Length: 5\r\n\r\nhello

POST Request
• Look for the blank line that separates the headers from the

body

• "\r\n\r\n"

• Read everything after this blank line

• Make sure you've read "Content-Length" number of bytes

• It's possible to only receive part of a request and have to
read the rest from the TCP socket

POST /path HTTP/1.1\r\nContent-Type: text/plain\r\nContent-Length: 5\r\n\r\nhello

POST Request
• When you read the content from the body:

• Do whatever your server does based on its feature for
this path

• Send a response to the client

POST /path HTTP/1.1\r\nContent-Type: text/plain\r\nContent-Length: 5\r\n\r\nhello

Query String

• Allow users to send information in a URL

• Common Application:

• User types a query in a search engine

• Their query is sent in the URL as a query string

URL Recall
Protocol://host:port/path?query_string#fragment

● Query String - [Optional] Contains key-value pairs set by the client
● https://www.google.com/search?q=web+development
○ HTTPS request to Google search for the phrase "web development"

● https://duckduckgo.com/?q=web+development&ia=images
○ An HTTPS request to Duck Duck Go image search for the phrase "web development"

● Fragment - [Optional] Specifies a single value commonly used for
navigation

● https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
○ HTTPS Request for the URI Wikipedia page

● https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Definition
○ HTTPS Request for the URI Wikipedia page that will scroll to the definition of URI

https://www.google.com/search?q=web+development
https://duckduckgo.com/?q=web+development&ia=images
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Definition

Query String Format
https://duckduckgo.com/?q=web+development&ia=images

• Preceded by a question mark - ?

• Consists of key-value pairs

• Key and value separated by =

• Pairs separated by &

• Can only contain ASCII characters

• Cannot contain white space

Percent Encoding
• If a non-ASCII character is sent as part of a query string it

must be url-encoded (or percent-encoded)

• Specify byte values with a % followed by 2 hex values

• 한

• %ed%95%9c

• " " <-- single space

• %20

White Space
• URLs cannot contain spaces

• Spaces can be percent encoded as %20

• Can also replace spaces with +

• The reserved character + indicates a key mapping to
multiple values

Reserved Characters
• Some ASCII characters are reserved

• Example: ? begins a query string

• Reserved characters must be % encoded

• Notable characters that are NOT reserved

• Dash -

• Dot .

• Underscore _

• Tilda ~

: &

/ '

? (

)

[*

] +

@ ,

! ;

$ =

Reserved

HTML Forms

Dynamic Pages
•We've learned how to host static content from

our servers

• Content does not change

• For the rest of the semester we'll add dynamic

features

• Users can change content and interact with

other users

• No longer making web sites

• Now we're developing Web Applications

HTML Forms
• The action attribute is the path for the form

• The method attribute is the type of HTTP request made

•When the form is submitted, an HTTP request is sent to

the path using this method

• This behaves similar to clicking a link

<form action="/form-path" method="get">
 <label>Enter your name:

 <input type="text" name="commenter">

 </label>

 <label>Comment:

 <input type="text" name="comment">

 </label>

 <input type="submit" value="Submit">
</form>

HTML Forms
• Use input elements for the user to interact with the form

• The type attribute specifies the type of input

• This input is a text box

• The name attribute is used when the data is sent to the
server

<form action="/form-path" method="get">
 <label>Enter your name:

 <input type="text" name="commenter">

 </label>

 <label>Comment:

 <input type="text" name="comment">

 </label>

 <input type="submit" value="Submit">
</form>

HTML Forms
• Should provide a label for each input

• Helps with accessibility (eg. Screen

readers)

• Clicking the label focuses the input

<form action="/form-path" method="get">
 <label>Enter your name:

 <input type="text" name="commenter">

 </label>

 <label>Comment:

 <input type="text" name="comment">

 </label>

 <input type="submit" value="Submit">
</form>

HTML Forms
• An input of type submit makes a button

that will send the HTTP request when
clicked

• The value attribute is the text on the button

<form action="/form-path" method="get">
 <label>Enter your name:

 <input type="text" name="commenter">

 </label>

 <label>Comment:

 <input type="text" name="comment">

 </label>

 <input type="submit" value="Submit">
</form>

<form action="/form-path" method="get">
 <label>Enter your name:

 <input type="text" name="commenter">

 </label>

 <label>Comment:

 <input type="text" name="comment">

 </label>

 <input type="submit" value="Submit">
</form>

HTML Forms
• This sends a GET request containing the form

data in a query string

• Page reloads with the content of the response

GET /form-path?commenter=Jesse&comment=Good+Morning%21 HTTP/1.1

HTTP GET Limitations
• Sending form data in a query string can cause issues

• Browsers and servers have limits on the length of a

URL

• Browsers and servers have limits on the the total

length of a GET request, including headers

• Typically a 4-16kB

• How would we upload a file? URL must be ASCII.

Entire file would be % encoded

• Enter POST requests

<form action="/form-path" method="post">
 <label>Enter your name:

 <input type="text" name="commenter">

 </label>

 <label>Comment:

 <input type="text" name="comment">

 </label>

 <input type="submit" value="Submit">
</form>

HTML Forms - POST
• Change the method of a form to post

to send the entered data in the body of
a POST request

HTML Forms - POST
• A request is sent to the path from the action attribute without a

query string

• Content-Type is a url encoded string containing the entered data

• Same format as the query string

• Read the Content-Length to know how many bytes are in the
body

• Foreshadow: Very important when receiving more data than

the size of your TCP buffer

POST /form-path HTTP/1.1

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

commenter=Jesse&comment=Good+morning%21

HTML Injection
Attacks

HTML Injection
•When hosting static pages

• You control all the content

• Limited opportunity for attackers

•When hosting user-submitted content

• You lose that control

•Must protect against attacks

•Never trust your users!!

Never Trust Your Users!

Never Trust Your Users!
Seriously. NEVER.

Never Trust Your Users
• You may want to think your users will all act

in good faith

• For most users, this may be true

Never Trust Your Users
• You may want to think your users will all act

in good faith

• For most users, this may be true

• Besides your intended users, who else can
access your app?

Never Trust Your Users
• You may want to think your users will all act

in good faith

• For most users, this may be true

• Besides your intended users, who else can
access your app?

• EVERYONE!

Never Trust Your Users

• Do you trust literally everyone??

HTML Injection
• You are now handling user data and sending it

to other users (Through chat messages)

• You're building a form that accepts user data
and serves it to all other users

• What happens when a user enters this in chat:

• "<script>maliciousFunction()</script>"

• "<script>maliciousFunction()</script>"

• This attack is called an HTML injection attack

• This string is uploaded to your server

• Your server stores this string

• Your server sends this string to all users who use your app

• Their browsers render the injected HTML

• Their browsers runs the injected JS

HTML Injection (XSS)

• Lucky for us, Preventing this attack is very simple

HTML Injection

• To prevent this attack:

• Escape HTML when handling user submitted data

• Escape HTML

• Replace &, <, and > with their HTML escaped
characters

• '&' -> &

• '<' -> <

• '>' -> >

HTML Injection

• The escaped characters & < > will be
rendered as characters by the browser

• Browser does not treat these as HTML

HTML Injection

• Replace &, <, and > with their HTML escaped
characters

• <script>maliciousFunction()</script>

• becomes

• <script>maliciousFunction()</script>

• and is rendered as a string instead of
interpreted as HTML

HTML Injection

• Replace &, <, and > with their HTML escaped
characters

• Order is important!

• Always escape & first

• If & is escaped last you'll get:

• &lt;script&gt;maliciousFunction()&lt;
/script&gt;

• Which will not render the way you intended

HTML Injection

AJAX & Polling

User Interaction
•Our goal is to add more interactivity to our site

•Submitting a form reloads the page after
submission

•We want:

• To send messages without a reload

•Get new data without a reload, or any action
from the user

AJAX

Asynchronous JavaScript [And XML]

A way to make HTTP requests using JavaScript after the page loads

AJAX - HTTP GET Request
var request = new XMLHttpRequest();
request.onreadystatechange = function(){
 if (this.readyState === 4 && this.status === 200){
 console.log(this.response);
 // Do something with the response
 }
};
request.open("GET", "/path");
request.send();

• Use JavaScript to make an AJAX request

• Create an XMLHttpRequest object

• Call "open" to set the request type and path

• Call send to make the request

AJAX - HTTP GET Request
var request = new XMLHttpRequest();
request.onreadystatechange = function(){
 if (this.readyState === 4 && this.status === 200){
 console.log(this.response);
 // Do something with the response
 }
};
request.open("GET", "/path");
request.send();

• Set onreadystatechange to a function that will be called whenever
the ready state changes

• A ready state of 4 means a response has been fully received

• In this example, when the ready state changes to 4 and the
response code is 200, the response is printed to the console

• This is where the response would be processed

AJAX - HTTP POST Request
var request = new XMLHttpRequest();
request.onreadystatechange = function(){
 if (this.readyState === 4 && this.status === 200){
 console.log(this.response);
 // Do something with the response
 }
};
request.open("POST", "/path");
let data = {'username': "Jesse", 'message': "Welcome"}
request.send(JSON.stringify(data));

• To make a post request:

• Change the method to POST

• Add the body of your request as an argument to
the send method

Forms and AJAX
•We have choices for the format

when sending the data of the AJAX
request

•We can use an HTML form

•Add an onsubmit attribute that calls
your JavaScript function

•Add "return false" to block the
page reload

•Or use event.preventDefault(); in
the JS function

•Use JavaScript to read the data
from the entire form

<form id="myForm" onsubmit="sendMessageWithForm(); return false;">
 <label for="form-chat">Chat: </label>
 <input id="form-chat" type="text" name="message">

 <input type="submit" value="Submit">
</form>

function sendMessageWithForm() {
 const formElement = document.getElementById("myForm");
 const formData = new FormData(formElement);

 const request = new XMLHttpRequest();
 // onreadystatechange removed for slide

 request.open("POST", "send-message-form");
 request.send(formData);
}

Encodings - JSON
•Another option: Manually

format the data using JSON

•Don't use the form element

•Create a button instead of a
submit input

• In JavaScript, read the
value of each input and
create your own JSON
object

<label>Chat:
<input id="chatInput" type="text" name="message">

</label>

<button onclick="sendMessage()">Send</button>

function sendMessage() {
 const chat = document.getElementById("chatInput");
 const data = {"message": chat.value()};

 const request = new XMLHttpRequest();
 // onreadystatechange removed for slide

 request.open("POST", "send-message-form");
 request.send(JSON.stringify(data));
}

Fetch
• Fetch is an alternate

way to send an
asynchronous request

•Uses promises

•Can await a promise
(shown) or use “then”

• *Fetch is what the HW
front end uses

<label>Chat:
<input id="chatInput" type="text" name="message">

</label>

<button onclick="sendMessage()">Send</button>

function sendMessage() {
 const chat = document.getElementById("chatInput");
 const data = {"message": chat.value()};
 const response = await fetch("/send-message-form", {
 method: "POST",
 headers: {
 "Content-Type": "application/json",
 },
 body: JSON.stringify(data),
 });
}

Polling

Making it Live
• What if someone chats after you load the page?

• Have to refresh or send a new AJAX call to get the new
data

• AJAX is preferred, but what triggers the AJAX request?

• Polling

• Keep sending AJAX requests at fixed intervals to refresh
the data

Polling
setInterval(getMessages, 1000)

• Browser sends requests for updates at regular intervals

• Use setInterval

• Takes a function to be called

• Takes the number of milliseconds to wait between
function calls

• This example calls getMessages() (Implementation not
shown) every second

• getMessages() will make the AJAX call to get the most
recent data from the server and render it on the page

Polling

• Easy to implement

• Assuming the AJAX calls are already setup

• Just telling the browser to keep making requests to the

server

• Limitations

• Users wait up to an entire interval to get new content

• Lowering the interval length increases server load and

bandwidth

setInterval(getMessages, 1000)

Long-Polling
• Server hangs on requests (Intentionally)

• Client makes a long-poll request to get the most current data

• If there's new data, the server responds just like polling

• When the response is received, client makes another long-

poll request

• If there's no new data, the server does not send a response

• Server waits until there is new data to be sent, then responds

• Timeouts

• If there's no new data after ~10-20 seconds, server

responds with no new data

• Client gets the response and sends a new long-poll request

Long-Polling
• End result

• The client always has a request waiting at the server

• Whenever the server has data to send to the client, it

responds to the waiting request

• Real-time updates!

• Minimal delays between users without excess server load

• *If designed properly. This is not true if each request

requires it's own thread

• We'll reach this same goal with WebSockets

• More modern solution

