HTTP POST

POST Request

e A POST request, or any request containing a body, will be
formatted similar to your HT TP responses

POST /path HTTP/1.1
Content-Type: text/plain
Content-Length: 5

hello

POST Request

e More accurately

POST /path HTTP/1.1\r\nContent-Type: text/plain\r\nContent-Length: 5\r\n\r\nhello

POST Request

e When parsing, there will be Content-Length and
Content-Type headers

POST /path HTTP/1.1\r\nContent-Type: text/plain\r\nContent-Length: 5|\r\n\r\nhe||o

POST Request

e | ook for the blank line that separates the headers from the
body

e "\r\n\r\n"
e Read everything after this blank line
e Make sure you've read "Content-Length" number of bytes

e |t's possible to only receive part of a request and have to
read the rest from the TCP socket

POST /path HTTP/1.1\r\nContent-Type: text/plain\r\nContent-Length: !ﬂ\r\n\r\dhello

POST Request

e \When you read the content from the body:

e Do whatever your server does based on its feature for
this path

e Send a response to the client

POST /path HTTP/1.1\r\nContent-Type: text/plain\r\nContent-Length: 5\r\n\r\r4he|lo

Query String

e Allow users to send information in a URL

e Common Application:
e User types a query in a search engine

e Their query is sent in the URL as a query string

URL Recall

Protocol://host:port/path?query_string#ffragment
e Query String - [Optional] Contains key-value pairs set by the client

e https://www.google.com/search?g=web+development
o HTTPS request to Google search for the phrase "web development”

e https://duckduckgo.com/?qg=web+development&ia=images

o An HTTPS request to Duck Duck Go image search for the phrase "web development

e Fragment - [Optional] Specifies a single value commonly used for
navigation

e https://en.wikipedia.org/wiki/Uniform Resource ldentifier
o HTTPS Request for the URI Wikipedia page

e https://en.wikipedia.org/wiki/Uniform Resource l|dentifier#tDefinition
o HTTPS Request for the URI Wikipedia page that will scroll to the definition of URI

https://www.google.com/search?q=web+development
https://duckduckgo.com/?q=web+development&ia=images
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier#Definition

Query String Format

https://duckduckgo.com/?g=web+development&ia=images

e Preceded by a question mark - ?
e Consists of key-value pairs
e Key and value separated by =
e Pairs separated by &
e Can only contain ASCII characters

e Cannot contain white space

Percent Encoding

If a non-ASCI| character is sent as part of a query string it
must be url-encoded (or percent-encoded)

Specify byte values with a % followed by 2 hex values

5

e %ed%95%9c

<-- single space
e %20

White Space

e URLs cannot contain spaces
e Spaces can be percent encoded as %20

e Can also replace spaces with +

e [he reserved character + indicates a key mapping to
multiple values

Reserved Characters

e Some ASCII characters are reserved B arvad
e Example: ? begins a query string

e Reserved characters must be % encoded

e Notable characters that are NOT reserved
e Dash -
e Dot.
e Underscore _
e Tilda ~

HIML Forms

Dynamic Pages

e \\We've learned how to host static content from
our servers

e Content does not change

e For the rest of the semester we'll add dynamic
features

e Users can change content and interact with
other users

* No longer making web sites
* Now we're developing Web Applications

HIML Forms

e The action attribute is the path for the form

e The method attribute is the type of HI TP request made

 \When the form is submitted, an HT TP request is sent to
the path using this method

e This behaves similar to clicking a link

<form faction="/form—-path”™ method="get"
<label>Enter your name:

<input type="text" name="commenter'>

</ label>

Enter your name:

S

<label>Comment:
 Comment:

<input type="text" name="comment'>

</ label>

-

<input type="submit" value="Submit">
</form>

HIML Forms

e Use input elements for the user to interact with the form
e The type attribute specifies the type of input
e This input is a text box

e [The name attribute I1s used when the data i1s sent to the
server

<form action="/form-path"™ method="get">
<label>Enter your name:
 Ent .
<input type="text" name='"commenter">kbr/> NCr your name.

<label>Comment:
 Comment:

<input type="text" name="comment">
 _
</ label>

<input type="submit" value="Submit">
</form>

HIML Forms

 Should provide a label for each input

e Helps with accessibility (eg. Screen
readers)

e Clicking the label focuses the input

<form action="/form-path" method="get">
<label>Enter your name:
 Ent .
<input type="text" name="commenter">
 Nicr your name.

<label>Comment:
 Comment:

<input type="text" name="comment">
 _
</ label>

<input type="submit" value="Submit">
</form>

HIML Forms

 An input of type submit makes a button
that will send the HT TP request when
clicked

e [he value attribute Is the text on the button

<form action="/form-path"™ method="get">
<label>Enter your name:
 Ent .
<input type="text" name="commenter">
 Nicr your name.

<label>Comment:
 Comment:

<input type="text" name="comment">
 _
</ label>

<input type="submit" value="Submit">

HIML Forms

* This sends a GET request containing the form
data in a query string

* Page reloads with the content of the response

GET /form-path?commenter=Jesse&comment=Good+Morning%21 HTTP/1.1

<form action="/form-path" |method="get"p

<label>Enter your name:
 .
<input type="text" name='"commenter'">
 Enter your name:

</label>

<label>Comment:
 Comment:

<input type="text" name="comment">
 Good Morning!
</ label> .

<input type="submit" value="Submit">

</form>

HTTP GET Limitations

e Sending form data in a query string can cause issues

 Browsers and servers have limits on the length of a
URL

e Browsers and servers have limits on the the total
length of a GET request, including headers

e Typically a 4-16kB

e How would we upload a file? URL must be ASCII.
Entire file would be % encoded

 Enter POST requests

HTML Forms - POST

e Change the method of a form to post
to send the entered data in the body of
a POST request

<form action="/form-path" [method="post'}>

<label>Enter your name:

<input type="text" name="commenter'>

</ label>

<label>Comment:

<input type="text" name="comment'>

</ label>

<input type="submit" value="Submit">
</form>

HTML Forms - POST

e A request Is sent to the path from the action attribute without a
query string

e Content-Type is a url encoded string containing the entered data
e Same format as the query string

e Read the Content-Length to know how many bytes are in the
body

e Foreshadow: Very important when receiving more data than
the size of your TCP buffer

POST /form-path HTTP/1.1
Content-Length: 27
Content-Type: application/x-www-form-urlencoded

commenter=Jesse&comment=Good+morning %21

HITML Injection
Attacks

HITML Injection

* \When hosting static pages
* You control all the content
e Limited opportunity for attackers

* \When hosting user-submitted content
* You lose that control
* Must protect against attacks
* Never trust your users!!

Never Trust Your Users!

Never Trust Your Users!
Seriously. NEVER.

Never Trust Your Users

* You may want to think your users will all act
In good faith

* For most users, this may be true

Never Trust Your Users

* You may want to think your users will all act
In good faith

* For most users, this may be true

e Besides your intended users, who else can
access your app?

Never Trust Your Users

* You may want to think your users will all act
In good faith

* For most users, this may be true

e Besides your intended users, who else can
access your app?

e EVERYONE!

Never Trust Your Users

* Do you trust literally everyone??

HTML Injection

* You are now handling user data and sending it
to other users (Through chat messages)

* You're building a form that accepts user data
and serves It to all other users

 \What happens when a user enters this in chat:

* "<script>maliciousFunction()</script>"

HTML Injection (XSS)

e "<script>maliciousFunction()</script>"

e This attack Is called an HI ML injection attack
e This string Is uploaded to your server
e Your server stores this string
e Your server sends this string to all users who use your app
 Their browsers render the injected HIML

e Their browsers runs the injected JS

HTML Injection

e | ucky for us, Preventing this attack is very simple

HTML Injection

e o prevent this attack:
e Escape HTML when handling user submitted data
e Fscape HTML

e Replace &, <, and > with their HTML escaped
characters

e &' -> &
o '<' > &li;

e '>' -> >

HTML Injection

* [he escaped characters & < > will be
rendered as characters by the browser

e Browser does not treat these as HTML

HTML Injection

e Replace &, <, and > with their HTML escaped
characters

e <script>maliciousFunction()</script>
* becomes
o <script>maliciousFunction()</script>

 and is rendered as a string instead of
Interpreted as HIML

HTML Injection

e Replace &, <, and > with their HTML escaped
characters

e Order is important!
e Always escape & first
e |[f & Is escaped last you'll get:

e &lt;script&gt;maliciousFunction()&lt;
/script&gt;

e \Which will not render the way you intended

AJAX & Polling

User Interaction

e Our goal is to add more interactivity to our site

e Submitting a form reloads the page after
submission

e \We want:
* [0 send messages without a reload

e Get new data without a reload, or any action
from the user

AJAX

Asynchronous JavaScript [And XML]

A way to make HTTP requests using JavaScript after the page loads

AJAX - HTTP GET Request

var request = new XMLHttpRequest();
request.onreadystatechange = function(}
if (this.readyState === 4 && this.status === 200)
console.log(this.response);

// Do something with the response

B

request.open("GET", "/path");
request.send();

e Use JavaScript to make an AJAX request
e Create an XMLHttpRequest object
e Call "open" to set the request type and path

e Call send to make the request

AJAX - HTTP GET Request

var request = new XMLHttpRequest();
request.onreadystatechange = function(}
if (this.readyState === 4 && this.status === 200){
console.log(this.response);

// Do something with the response

B

request.open("GET", "/path");
request.send();

e Set onreadystatechange to a function that will be called whenever
the ready state changes

e A ready state of 4 means a response has been fully received

e In this example, when the ready state changes to 4 and the
response code is 200, the response is printed to the console

e This is where the response would be processed

AJAX - HTTP POST Request

var request = new XMLHttpRequest();
request.onreadystatechange = function()}
if (this.readyState === 4 && this.status === 200){
console.log(this.response);
// Do something with the response

}
J;
request.open('POST"| "/path");
let data = {'username’: "Jesse", 'message’: "Welcome"}
request.send(JSON.stringify(data));

* Jo make a post request:
e Change the method to POST

e Add the body of your request as an argument to
the send method

Forms and AJAX

e \We have choices for the format
: <form id="myForm" onsubmit="sendMessageWithForm(); return false;">
when Sendmg the data of the AJAX <label for="form-chat'">Chat: </label>
request <input id="form-chat" type="text" name="message'>

<input type="submit" value="Submit">

e We can use an HTML form </form>

e Add an onsubmit attribute that calls

your JavaScript function function sendMessageWithForm() A
const formElement = document.getElementById("myForm"):
e Add "return false" to block the const formData = new FormData(formElement);
age reload
Pag const request = new XMLHttpRequest();
e Or use event.preventDefault(); in // onreadystatechange removed for slide
the JS function

request.open("POST", "send-message-form");
request.send(formData);

e Use JavaScript to read the data
from the entire form

Encodings - JSON

* Another option: Manually Sabetariae

format the data USing JSON <input id="chatInput" type="text" name="message'>

</label>

EDlela e b=l nielgpat =1 [=1aal=1gl 8 <button onclick="sendMessage()">Send</button>

e Create a button instead of a [R K
const chat = document.getElementById("chatInput");

submit input const data = {"message": chat.value()};

' const request = new XMLHttpRequest();
*In JavaSC”pt’ _read the // onreadystatechange removed for slide
value of each input and

request.open("POST", "send-message-form");

create your own JSON request.send(JSON.stringify(data));
object

Fetch

e Fetch Is an alternate <label>Chat:
<input 1d="chatInput" type="text" name="message'>

way to send an </label>
asynCh Fonous reqUeSt <button onclick="sendMessage()">Send</button>
e Uses Promises function sendMessage() {
const chat = document.getElementById("chatInput");
: : const data = {"message": chat.value()};
. Can awalt d prOmlse const response = await fetch("/send-message-form", {
T ’y method: POST S
(shown) or use “then headers: {

"Content-Type": "application/json",

i
body: JSON.stringify(data),

e *Fetch I1s what the HW
front end uses

Making It Live

e What if someone chats after you load the page”?

e Have to refresh or send a new AJAX call to get the new
data

e AJAX is preferred, but what triggers the AJAX request?

e Polling

e Keep sending AJAX requests at fixed intervals to refresh
the data

setInterval(getMessages, 1000)

e Browser sends requests for updates at regular intervals
e Use setinterval
e Takes a function to be called

e JTakes the number of milliseconds to wait between
function calls

e This example calls getMessages() (Implementation not
shown) every second

e getMessages() will make the AJAX call to get the most
recent data from the server and render it on the page

setInterval(getMessages, 1000)

e Fasy to implement
e Assuming the AJAX calls are already setup

e Just telling the browser to keep making requests to the
server

e | imitations
 Users wait up to an entire interval to get new content

* | owering the interval length increases server load and
bandwidth

Long-Polling

Server hangs on requests (Intentionally)
Client makes a long-poll request to get the most current data
e |f there's new data, the server responds just like polling

* WWhen the response Is received, client makes another long-
poll request

If there's no new data, the server does not send a response
Server waits until there is new data to be sent, then responds
Timeouts

e |f there's no new data after ~10-20 seconds, server
responds with no new data

e Client gets the response and sends a new long-poll request

Long-Polling

 End result
 The client always has a request waiting at the server

e \Whenever the server has data to send to the client, it
responds to the waiting request

e Real-time updates!
e Minimal delays between users without excess server load

e *If designhed properly. This is not true if each request
requires it's own thread

e We'll reach this same goal with WebSockets
e More modern solution

