
Docker
and

docker compose

1

Vocab
• Development Environment (dev)

• The environment where you write your code

• Ex. Your laptop

• Add features; Find and eliminate bugs

• Production environment (prod)

• The environment where your app will eventually live

• The live server with real end users

• Do everything we can to avoid bugs in production

2

Deployment Headaches
• It works on my laptop!

• Run your code in production and it's broken

• Many causes

• Different version of compiler/interpreter

• Dependancies not linked

• Hard-coded paths

• Different environment variables

• etc.

3

Virtual Machines
• Simulate an entire machine

• Run the virtual machine (VM) in your development

environment for testing

• Run an exact copy of the VM on the production server

• No more surprise deployment issues

• Simulating an entire machine can be inefficient

• If you've ran a VM on your laptop you know how

slow this can get

4

Security
• Can't break out of the VM [Without sophisticated

attacks]

• If an attacker compromises the server, they can only

access what you put in the container

• Can't "rm -rf /" your entire machine

• Patch the exploited vulnerability and rebuild the

image

• The attacker can still cause significant damage and

steal private data

• They just can't destroy your server box

5

Security
• Sometimes an app has to allow code

injection attacks to function

• AutoLab

• AWS

• Digital Ocean

• Run user code in their own VM/Container

6

Containers

• Effectively, lightweight VMs

7

Docker
• Docker is software that's used to create

containers

• Install Docker in your development
environment to test containers

• Install Docker in your production
environment and run the same
containers

8

Dockerfile
• To start working with Docker, write a

Dockerfile

• This file contains all the instructions
needed to build a Docker image

• Some similarities to a Makefile

9

Dockerfile
• Let's explore this

sample Dockerfile

• This Dockerfile
creates an image for
a node.js app

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

10

Dockerfile
• The first line of your

Dockerfile will specify the
base image

• This image is downloaded
and the rest of your Dockerfile
adds to this image

• In this example: We start with
Ubuntu 18.04

•Our Dockerfile can run Linux
commands in Ubunutu

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

11

Dockerfile
• Use the RUN keyword to

run commands in the
base image

• Use this for any setup of
your OS before setting
up your app

• In this example:
Updating apt-get which
is used to install software

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

12

Dockerfile
• Use ENV to set environment

variables

• Setting the home directory
here

• Can use ENV to setup any
other variables you need

• Use WORKDIR to change
your current working
directory

• Same as "cd"

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

13

Dockerfile
• Since we're starting with a

fresh image of Ubuntu:

•Only the default software
is installed

• RUN commands to install
all required software for
your app

• Typically the development
tools for your language of
choice

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

14

Dockerfile
• COPY all your app file into the

image

• "." denotes the current directory

• Run docker from your apps root
directory

• The the first "." will refer to
your apps directory

•We changed the home and
working directory to /root

• The second "." refers to /root
in the image

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

15

Dockerfile
• Now that your apps files are

in the image, run all app
specific commands

•Order is important

• Don't depend on your app
files before copying them
into the image

• Use RUN to install
dependancies and perform
any other required setup

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

16

Dockerfile
• Use EXPOSE to allow

specific ports to be accessed
from outside the container

• By default, all ports are
blocked

• Container is meant to run in
isolation

• To run a web app in a
container, expose the port
you need

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

17

Dockerfile
• Finally, use CMD to run your

app

• Important: Do not use RUN to
run your app!

• RUN will execute the command
when the image is being built

• CMD will execute when the
container is ran

•We do not want the app to run
when the image is being built

FROM ubuntu:18.04

RUN apt-get update

Set the home directory to /root
ENV HOME /root

cd into the home directory
WORKDIR /root

Install Node
RUN apt-get update --fix-missing
RUN apt-get install -y nodejs
RUN apt-get install -y npm

Copy all app files into the image
COPY . .

Download dependancies
RUN npm install

Allow port 8000 to be accessed
from outside the container
EXPOSE 8000

Run the app
CMD node app-www.js

18

Dockerfile
• There are many base images to

choose from

• Start with an image with your
language installed to simplify
your docker file

• Search "docker <language>"
to find images/tutorials for
your favorite language

• This image starts with node
installed so we can remove the
node installation lines

FROM node:13

ENV HOME /root
WORKDIR /root

COPY . .

Download dependancies
RUN npm install

EXPOSE 8000

CMD node app-www.js

19

Dockerfile
• Example for Python

FROM python:3.8

ENV HOME /root
WORKDIR /root

COPY . .

Download dependancies
RUN pip3 install -r requirements.txt

EXPOSE 8000

CMD python3 -u app.py

20

Dockerfile
• For Python

•Make sure you add this
-u flag

• This will force stdout and
stderr to be unbuffered

•Without it, when running
in Docker, you might not
see your print statements

FROM python:3.8

ENV HOME /root
WORKDIR /root

COPY . .

Download dependancies
RUN pip3 install -r requirements.txt

EXPOSE 8000

CMD python3 -u app.py

21

Running Your App

•When preparing your app to run in a
container

•Do not use "localhost" [in your code]

• Use "0.0.0.0" as the host instead

• This allows your app to be accessed
from outside the container

22

Docker Compose

• Manages building/running docker images/containers

• Build and run with one command

• docker compose up --build --force-recreate

• No need to use docker build and docker run

• Will be used to manage multiple containers

• Separate container for your database

• Let's walk through a docker-compose.yml file

Docker Compose

• Specify the docker compose file format version

• Version 3[.8] is the current latest version

• This line is now optional

Docker Compose
docker-compose.yml

version: '3'
services:
 app:
 build: .
 ports:
 - '8080:8000'

• List of all the services for docker compose to run

• A docker container is created for each service

Docker Compose
docker-compose.yml

version: '3'
services:
 app:
 build: .
 ports:
 - '8080:8000'

• Name each service

• We have one service that we name "app"

• This name becomes the hostname when
communicating between containers

Docker Compose
docker-compose.yml

version: '3'
services:
 app:
 build: .
 ports:
 - '8080:8000'

• Use 'build' to specify the path to build from

• Docker compose will look in this directory for a
Dockerfile and use it to build the image

• Same as the trailing '.' when building an image

Docker Compose
docker-compose.yml

version: '3'
services:
 app:
 build: .
 ports:
 - '8080:8000'

• Map a local port to a container port

• Same as using "-p 8080:8000" when
running a single container

Docker Compose
docker-compose.yml

version: '3'
services:
 app:
 build: .
 ports:
 - '8080:8000'

• Mapping a port allows your app [inside the
container] to be accessed from your machine

• This line maps your local port 8080 [On your
machine] to port 8000 inside your container

Docker Compose
docker-compose.yml

version: '3'
services:
 app:
 build: .
 ports:
 - '8080:8000'

• When your machine receives a request for the
mapped port

• Docker forwards the request to the container on
the specified port

Docker Compose
docker-compose.yml

version: '3'
services:
 app:
 build: .
 ports:
 - '8080:8000'

http://localhost:8080 Your Laptop

app
container

http://app:8000

• To run your app

• docker compose up

• To run in detached mode

• docker compose up -d

• To rebuild and restart the containers

• docker compose up --build --force-recreate

• *This is the best command to use!

• To restart the container without rebuilding

• docker compose restart

Running Your App

• To rebuild and restart the containers

• docker compose up --build --force-recreate

• Use this command during development

• Very important to rebuild your images after you
change code

• If you don't, you will not see your changes
since you'll be running your old code

Running Your App

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• Let's modify our docker compose
configuration to run our database

• "services" is a list of all the images/
containers to create

• We'll add a second service for the DB

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• Name each service

• These names are used as the hostnames for each
container

• Used to communicate between containers

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• This service named 'mongo' uses a pre-built image

• Same as having a 1-line Dockerfile:

• "FROM mongo:4.2.5"

• No Dockerfile is needed

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• Use 'environment' to set any needed
environment variables

• If using MySQL, set variables for your username/
password

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• We use an environment
variable to tell our app
to wait until the
database is running
before connecting to it

Docker Compose

FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD /wait && python app.py

version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• If the app runs before the
database, it won't be able to
establish a DB connection

• Solution: Wait for the DB to
start before running the app

Docker Compose

FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD /wait && python app.py

version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• This solution from
github user "ufoscout"
works well

Docker Compose

FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD /wait && python app.py

version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• This file is used to build both images and
run both containers using docker-compose

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• Recall that we chose names for each service

• When connecting to the database in your app

• The service name is the hostname for the container

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

mongo_client = MongoClient('mongo')

mongo_client = MongoClient('localhost')

version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

• Use the name of the service

• docker-compose will resolve this hostname
to the appropriate container

Docker Compose
docker-compose.yml

mongo_client = MongoClient('mongo')

mongo_client = MongoClient('localhost')

• We can name our services whatever we want

• Make sure you are consistent!

Docker Compose
version: '3.3'
services:
 mysupercooldatabase:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mysupercooldatabase:27017
 ports:
 - '8080:8000'

docker-compose.yml

mongo_client = MongoClient('mysupercooldatabase')

mongo_client = MongoClient('localhost')

• docker-compose up --build --force-recreate

• Will now start both containers

• Use the service name as the host name to
communicate across containers

Running Your App

