
API

• We now have a database that stores app data

• Users have to control data

• Manage their profile/setting

• Make posts

• Use a shopping cart

• etc.

• How should users interact with stored data?

Data

• How do users interact with stored data?

Data

User/Client Server Database

• How does our server interact with stored
data?

Data

Server Database

• CRUD is an acronym for the 4 basic
operation used to control data

• Create

• Retrive

• Update

• Delete

CRUD

• Create a new record

• INSERT INTO user (?, ?)

• userCollection.insert({"email":"...", "username": "..."})

CRUD - Create

• When a record is created, it should be assigned
a unique id

• This id will be used to identify the created
record

• The id is typically an auto-incrementing integer

• First record had id==1, second has id==2, etc

• Let your database generate the ids

• CREATE TABLE user (id int AUTO_INCREMENT, ...)

CRUD - Create

• MongoDB does not have an auto-increment
feature

• You must manage your own ids as integers

• Maintain a collection that remembers the last
used id

• Increment the id each time a record is created

• Do not use the default "_id"

• It is not an integer and not allowed on the HW

CRUD - Create

• Retrieve all records

• SELECT * FROM user

• userCollection.find({})

• Retrieving all records is often called List

• Technically, the acronym is CRUDL when
list operations are allowed

CRUD - Retrieve/List

• Retrieve a single existing record

• SELECT * FROM user WHERE id=3

• userCollection.find({"id":3})

CRUD - Retrieve

• Update an existing record

• UPDATE user SET email=?, username=?
WHERE id=5

• userCollection.update({"id":5}, {"$set":
{"email":"...", "username":"..."}})

CRUD - Update

• Can update all fields except the id

• The id can change, but you should never
change it

CRUD - Update

• Delete an existing record

• DELETE FROM user WHERE id=2

• userCollection.delete({"id":2})

CRUD - Delete

• In practice, common to "soft delete"

• Don't actually delete the data

• Instead, mark it as deleted

• Do not allow retrieve/update operations on data
marked as deleted

• Soft deletion allows sys admins to perform
additional operations

• eg. User requests to undo an accidental delete

• Preserves history

CRUD - Delete

• How do users interact with our server?

Data

User/Client Server

• GET

• Request data from the server (Retrieve)

• POST

• Send data to the server (Create)

• PUT

• Create or update a resource (Update)

• DELETE

• Delete a resource (Delete)

HTTP Requests

• Both POST and PUT are used to send data to the
server

• POST

• Requires the server to process the data

• eg. Generating the id for a created record

• PUT

• Directly create/update a record

• Server does not process the data of the request

• Must be idempotent

HTTP - POST v. PUT

• When multiple identical HTTP requests are
sent

• If the requests are idempotent, they will
have the same effect as sending a single
request

• The additional requests will not change
the data of the API

HTTP - Idempotent

• GET is idempotent

• Only retrieve data

• GET should not change the data of the
API

HTTP - Idempotent

• PUT and DELETE requests must be
idempotent

• eg. A second identical PUT doesn't
change anything since the change was
already made

• eg. Deleting a record twice has the same
effect on the API as deleting the record
once

HTTP - Idempotent

• POST is not idempotent

• Since the server is processing the data,
there is no implied idempotent property

• eg. Sending 2 identical POST requests to
create a record will result in 2 records
being created with different ids

HTTP - Idempotent

• REST -> REpresentational State Transfer

• We'll use HTTP requests to interact with
data

• Designed to simplify the way data is used

• Improve reliability and scalability

RESTful API

• REST is fairly loosely defined (No RFC)

• Or loosely understood

• Typically measured on a spectrum

• An API can be more/less RESTful

• The API for the HW is mostly RESTful

RESTful API

• Client-Server architecture and
statelessness

• Both constraints are implicit when using
HTTP

• The use of cookies in a RESTful API would
be a violation of statelessness

• Usually accepted in practice (API tokens)

REST Constraints

• Cacheablility

• Each response must contain caching
information

• Requests should be cached if possible

• Must avoid stale data from being cached

REST Constraints

• Layered-System

• The API should have the ability to add
additional layers between it and the client

• Ex: Client interacts with a load balancer
that delegates to many instances of your
API

• Ex. A Proxy server is added that encrypts
all traffic (HTTPS)

REST Constraints

• Uniform Interface

• Resources are defined in the requests

• The user is given, in a response, enough
information to update/delete the resource

• A request contains all information needed
to handle that request

• The API should be self-contained (No
reliance on documentation that cannot be
accessed from an API path)

REST Constraints

• Users interact with our RESTful API

• API requests correlate to CRUD operations

Data

RESTful API CRUD

User/Client Server Database

