
HTTP over SSL/TLS



Signed Certificates



Vulnerability
Man-in-the-middle attack 

• The first step in an HTTPS connection:


• Client requests the server's public key


• An attacker controlling a router in one of the networks 
handling your packets can intercept this request and 
replace it with their own public key


• Attacker then intercepts all subsequent requests, decrypts 
them and responds with their responses


• It looks like you're talking to the server..


• Certificate Authorities (CA) can fix that



Certificate Authority (CA)
• A CA is a trusted source with a known public key


• Public key is pre-installed with your OS or your browser 
(Called a root CA)


• Assume no man-in-the-middle attack during OS and 
browser installation


• The CA issues certificates for domains and subdomains


• You verify that you control the domain


• Send them your public key (Signed with your private key)


• They send you a certificate



Certificate Authority (CA)
• Certificate includes


• Your public key


• Domain name and CA name


• A cryptographic signature of a hash of the certificate 
body


• The signature uses the CA's private key so you can 
verify it with their pre-installed public key that this was 
in fact issued by the CA


• Man-in-the-middle cannot fake this without the CA's 
private key!



Certificate Authority (CA)
• Key chain


• Not all CA public keys are pre-installed on your machine


• A CA can have their public key certified by a root CA 

• A domain must provide a key chain that leads to a root CA


• Example key chain


• Let's Encrypt certificate is signed by DST Root CA


• Let's Encrypt will sign your certificate


• Your key chain contains your public key signed by Let's Encrypt and 
Let's Encrypt's certificate is signed by DST


• Your browser starts with it's installed DST cert to verify the chain


• If a cert cannot be verified by a root CA, it is called Self-signed and 
should not be trusted



Certificate Authority (CA)

• For your project:


• You must obtain and install a valid signed certificate


• There must not be any security warnings given by the 
browser



Self-Signed 
Certificates



Self-Signed Certificate
• A CA will only sign your certificate if you control a domain name


• Buy a domain name and prove to the CA that you control it


• Cannot get a signed cert for "localhost"


• We'll generate our own self-signed certificates for the HW


• For development/educational purposes only!


• When you deploy an app for real users, do not use a self-
signed cert!


• These certs cannot be verified and are therefor vulnerable to 
man-in-the-middle attacks



OpenSSL
• OpenSSL is a very common SSL/TLS library


• Written in C


• Wrappers exist for many languages


• Can be used for many encryption needs


• Generating keys


• Signing certs


• Validating certs


• We'll use OpenSSL in the command line to generate self-signed 
certificates



Self-Signed Certificate

• Once SSL is installed (Required on Windows) you can run 
commands in the command line


• This command will generate a self-signed certificate


• You'll be asked a lot of questions


• For most, you can hit enter and leave them blank


• You must enter your country code though (eg. "us")

openssl req -x509 -newkey rsa:4096 -keyout private.key -out cert.pem -days 365 -sha256 -nodes



Self-Signed Certificate

• This command has many options


• You can adjust the options for your HW if you'd like (no reason to)


• req


• Request a signed certificate


• -x509


• Use the x509 standard format for the certificate


• -newkey rsa:4096


• Generate a new key for this cert using the RSA algorithm and a 
4k key size

openssl req -x509 -newkey rsa:4096 -keyout private.key -out cert.pem -days 365 -sha256 -nodes



Self-Signed Certificate

• -keyout private.key


• Save the private key in a file named "private.key"


• -out cert.pem


• Save the public certificate in a file named "cert.pem"


• -days 365


• This certificate will expire in 1 year


• -nodes


• Do not require a password to use the private key

openssl req -x509 -newkey rsa:4096 -keyout private.key -out cert.pem -days 365 -sha256 -nodes



Installing the Certificate
• Now that we have a certificate, we need to use it in our 

server to enable TLS


• Could add the cert to our server code directly


• We'll prefer to use a reverse proxy server.. next time



HTTPS



HTTPS
• Commonly called HTTP Secure or Secure HTTP


• From a web app development perspective


• HTTPS is the same protocol as HTTP


• We reuse all of our HTTP code


• The difference is that all our requests/responses are 
encrypted via SSL/TLS


• SSL (Secure Socket Layer) was renamed to TLS 
(Transport Layer Security) after SSL 3.0


• I'll only refer to the protocol as TLS after this note



TLS
• TLS fits between TCP and HTTP on our protocol stack


• All these protocols are modular


• TCP is not aware that the bytes it's sending are encrypted


• HTTP is not aware that the requests were encrypted or that the 
responses will be encrypted

Network/Protocol Stack

HTTP

TCP

IP

Network/Protocol Stack

HTTP

TLS

TCP

IP



TLS
• This allows us to continue to use TCP and HTTP


• We only need to add the TLS layer to our web apps to gain 
encryption


• This will not require any changes to the HTTP side of our 
servers!

Network/Protocol Stack

HTTP

TLS

TCP

IP



Communication with 
TLS



TLS
• What we want:


• Two-way encrypted traffic


• What we have:


• A server with a public/private key pair verified by a CA


• A client could encrypt using the servers public key


• How does the server encrypt responses sent to the client?



TLS Overview
• Client and server negotiate a TLS handshake


• During the handshake, a symmetric encryption key is 
agreed upon


• Same key encrypts and decrypts


• Client and server both have this key


• All communication in both directions is encrypted with this 
key


• With this goal in mind, how do a client and server securely 
agree on this key without an eavesdropper also knowing the 
key?



Diffie-Hellman Key Exchange
• Client and server agree on a prime number p with a group 

generator g


• A generator for a prime group means that 


• For each value 0 < i < p


• g^i mod p is a unique value


• We say g generates the group since multiplying g by itself 
p times (mop p) will provide every value 1 to p-1


• Both p and g are public



• Client and server both generate a random number


• Call the clients number a


• Call the servers number b


• Both a and b are private


• Client and server cannot even share these values with each 
other

Diffie-Hellman Key Exchange



• Client computes g^a mod p


• Sends this value to the server


• Server raises this value to the power of b mod p


• Server now has g^{ab} mod p


• Server computes g^b mod p


• Sends this value to the client


• Client raises this value to the power of a mod p


• Client now has g^{ab} mod p

Diffie-Hellman Key Exchange



• Client and server now have a shared secret g^{ab} mod p


• This secret is used as a seed to generate a symmetric 
encryption key


• Or used directly as the key


• The only values containing secret values that were sent over the 
network were


• g^a mod p


• g^b mod p


• And computing a or b from these values involves computing a 
discrete logarithm which is a cryptographic primitive

Diffie-Hellman Key Exchange



• Once the Client and server have a shared symmetric key, 
they can encrypt all their communication with this key


• The same key encrypts and decrypts


• Typical choice of algorithm is AES (Advanced Encryption 
Standard)


• Very brief description: AES repeatedly scrambles bytes and 
XORs them with values generated by the encryption key


• AES does not reduce to a cryptographic primitive


• Theoretical attacks exist, but no known practical attacks

Symmetric Key Encryption



TLS 1.2 Handshake
• Client Hello


• Here are the algorithms I support 


• Server Hello


• Here are the algorithms we'll use for this connection


• Server sends its certificate


• Client and server both generate their part of the symmetric key based on 
the chosen algorithms


• Ex. Generate a and send g^a mod p


• Server signs its portion with the private key from its certificate 

• With the partial key received from the client/server, compute the rest of the 
symmetric key


• Both parties now have the symmetric key and can encrypt/decrypt all 
following traffic



Forward Secrecy
• Note that the servers keys from its certificate were only used 

to verify the servers identity during the key exchange


• The encryption of traffic was done with a one-time symmetric 
key


• A different key is generated for every TLS connection


• Even if an eavesdropper stored all of the encrypted traffic 
and later stole the servers private key linked to the certificate


• They are still out of luck (Cannot use this private key to find 
the symmetric key)


• This is called forward secrecy



Algorithms Note
• RSA, Diffie-Hellman Key Exchange, and AES were 

mentioned as examples


• The algorithms change and evolve over time


• Different servers/clients may support different sets of 
algorithms over time


• TLS is very flexible and allows for any algorithms to be 
used, so long as the client and server both agree which 
ones will be used


• TLS itself does not define how to exchange keys or 
encrypt and instead defers to the algorithms for details



Privacy Note
• TLS Encrypts the entire HTTP request/response using the 

symmetric key


• Eavesdroppers can still see TCP/IP headers 

• Including source/destination IP addresses!


• They don't know what you're saying, but they know 
who you're talking to


• This is why VPNs are still popular even though most sites 
use HTTPS in current year


