HTTP over SSL/TLS



Signed Certificates



Vulnerability

Man-in-the-middle attack
e The first step in an HTTPS connection:
e Client requests the server's public key

e An attacker controlling a router in one of the networks
handling your packets can intercept this request and
replace it with their own public key

e Attacker then intercepts all subsequent requests, decrypts
them and responds with their responses

e |t looks like you're talking to the server..
e Certificate Authorities (CA) can fix that



Certificate Authority (CA)

e A CA is a trusted source with a known public key

e Public key is pre-installed with your OS or your browser
(Called a root CA)

e Assume no man-in-the-middle attack during OS and
browser installation

e The CA issues certificates for domains and subdomains
e You verify that you control the domain
e Send them your public key (Signed with your private key)
e They send you a certificate



Certificate Authority (CA)

e (Certificate includes
e Your public key

e Domain name and CA name

e A cryptographic signature of a hash of the certificate
body

e The signature uses the CA's private key so you can
verify it with their pre-installed public key that this was
in fact issued by the CA

e Man-in-the-middle cannot fake this without the CA's
private key!



Certificate Authority (CA)

e Key chain

 Not all CA public keys are pre-installed on your machine

e A CA can have their public key certified by a root CA

e A domain must provide a key chain that leads to a root CA
e Example key chain

e Let's Encrypt certificate is signed by DST Root CA

e |et's Encrypt will sign your certificate

e Your key chain contains your public key signed by Let's Encrypt and
Let's Encrypt's certificate is signed by DST

e Your browser starts with it's installed DST cert to verify the chain

e |f a cert cannot be verified by a root CA, it is called Self-signed and
should not be trusted



Certificate Authority (CA)

e For your project:
e You must obtain and install a valid signed certificate

e [here must not be any security warnings given by the
browser



Self-Signed
Certificates



Self-Signed Certificate

A CA will only sign your certificate if you control a domain name
e Buy a domain name and prove to the CA that you control it

e Cannot get a signed cert for "localhost”

e We'll generate our own self-signed certificates for the HW
e For development/educational purposes only!

e \When you deploy an app for real users, do not use a self-
signed cert!

e These certs cannot be verified and are therefor vulnerable to
man-in-the-middle attacks



OpenSSL

e OpenSSL is a very common SSL/TLS library
e Written in C

e Wrappers exist for many languages

e Can be used for many encryption needs
e Generating keys
e Signing certs
e Validating certs

e We'll use OpenSSL in the command line to generate self-signed
certificates



Self-Signed Certificate

openssl req -x509 -newkey rsa:4096 -keyout private.key -out cert.pem -days 365 -sha256 -nodes

e Once SSL is installed (Required on Windows) you can run
commands in the command line

e This command will generate a self-signed certificate

e You'll be asked a lot of questions
e For most, you can hit enter and leave them blank

e You must enter your country code though (eg. "us")



Self-Signed Certificate

openssl req -x509 -newkey rsa:4096 -keyout private.key -out cert.pem -days 365 -sha256 -nodes

e This command has many options

 You can adjust the options for your HW if you'd like (no reason to)

° reg
e Request a signed certificate
e -x509
e Use the x509 standard format for the certificate
e -newkey rsa:4096

e (Generate a new key for this cert using the RSA algorithm and a
4Kk key size



Self-Signed Certificate

openssl req -x509 -newkey rsa:4096 -keyout private.key -out cert.pem -days 365 -sha256 -nodes

e -keyout private.key
e Save the private key in a file named "private.key"
e -OuUt cert.pem
e Save the public certificate in a file named "cert.pem"
e -days 365
e This certificate will expire in 1 year
e -nodes

e Do not require a password to use the private key



Installing the Certificate

e Now that we have a certificate, we need to use it in our
server to enable TLS

e Could add the cert to our server code directly

e We'll prefer to use a reverse proxy server.. next time






HTTPS

e Commonly called HTTP Secure or Secure HTTP

e From a web app development perspective
e HTTPS is the same protocol as HTTP

e \We reuse all of our HT TP code

e The difference is that all our requests/responses are
encrypted via SSL/TLS

e SSL (Secure Socket Layer) was renamed to TLS
(Transport Layer Security) after SSL 3.0

e |'ll only refer to the protocol as TLS after this note



TLS

e TLS fits between TCP and HTTP on our protocol stack
e All these protocols are modular
e TCP is not aware that the bytes it's sending are encrypted

e HITP is not aware that the requests were encrypted or that the
responses will be encrypted

Network/Protocol Stack Network/Protocol Stack

HTTP

TCP

IP




TLS

e This allows us to continue to use TCP and HTTP

e We only need to add the TLS layer to our web apps to gain
encryption

 This will not require any changes to the HT TP side of our
servers!

Network/Protocol Stack




Communication with
TLS



TLS

What we want:

e [wo-way encrypted traffic

What we have:

e A server with a public/private key pair verified by a CA

A client could encrypt using the servers public key
How does the server encrypt responses sent to the client?



TLS Overview

Client and server negotiate a TLS handshake

During the handshake, a symmetric encryption key is
agreed upon

e Same key encrypts and decrypts
Client and server both have this key

All communication in both directions is encrypted with this
key

With this goal in mind, how do a client and server securely
agree on this key without an eavesdropper also knowing the
key?



Diffie-Hellman Key Exchange

e (Client and server agree on a prime number p with a group
generator g

e A generator for a prime group means that
e ForeachvalueO<i<p
e gl mod p Is a unigue value

e We say g generates the group since multiplying g by itself
p times (mop p) will provide every value 1 to p-1

e Both p and g are public



Diffie-Hellman Key Exchange

e Client and server both generate a random number
e (Call the clients number a
e Call the servers number b

e Both a and b are private

e (Client and server cannot even share these values with each
other



Diffie-Hellman Key Exchange

e Client computes g*a mod p
e Sends this value to the server
e Server raises this value to the power of b mod p
e Server now has g”M{ab} mod p

e Server computes gb mod p
e Sends this value to the client
e (Client raises this value to the power of a mod p
e Client now has g”{ab} mod p



Diffie-Hellman Key Exchange

e Client and server now have a shared secret g {ab} mod p

 [his secret is used as a seed to generate a symmetric
encryption key

e Or used directly as the key

* [he only values containing secret values that were sent over the
network were

e ghamodp
e gMbmodDp

e And computing a or b from these values involves computing a
discrete logarithm which is a cryptographic primitive



Symmetric Key Encryption

e Once the Client and server have a shared symmetric key,
they can encrypt all their communication with this key

e [he same key encrypts and decrypts

» Jypical choice of algorithm is AES (Advanced Encryption
Standard)

e \ery brief description: AES repeatedly scrambles bytes and
XORs them with values generated by the encryption key

e AES does not reduce to a cryptographic primitive
e [heoretical attacks exist, but no known practical attacks



TLS 1.2 Handshake

Client Hello

 Here are the algorithms | support

Server Hello

 Here are the algorithms we'll use for this connection
Server sends its certificate

Client and server both generate their part of the symmetric key based on
the chosen algorithms

e EX. Generate a and send g*a mod p
e Server signs its portion with the private key from its certificate

With the partial key received from the client/server, compute the rest of the
symmetric key

Both parties now have the symmetric key and can encrypt/decrypt all
following traffic



Forward Secrecy

 Note that the servers keys from its certificate were only used
to verify the servers identity during the key exchange

 The encryption of traffic was done with a one-time symmetric
key

e A different key is generated for every TLS connection

e Even if an eavesdropper stored all of the encrypted traffic
and later stole the servers private key linked to the certificate

e They are still out of luck (Cannot use this private key to find
the symmetric key)

e This is called forward secrecy



Algorithms Note

RSA, Diffie-Hellman Key Exchange, and AES were
mentioned as examples

The algorithms change and evolve over time

Different servers/clients may support different sets of
algorithms over time

TLS is very flexible and allows for any algorithms to be
used, so long as the client and server both agree which

ones will be used

e TLS itself does not define how to exchange keys or
encrypt and instead defers to the algorithms for details



Privacy Note

e TLS Encrypts the entire HT TP request/response using the
symmetric key

e Eavesdroppers can still see TCP/IP headers
e |Including source/destination IP addresses!

e [hey don't know what you're saying, but they know
who you're talking to

e This is why VPNs are still popular even though most sites
use HTTPS in current year



