
OAuth 2.0 - Extras

User / Resource Owner

OAuth 2.0 - Authorization Code Flow

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF and State

User / Resource Owner

2. Authorization Grant

5. Authorization Grant

6. Access Token

1. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF - Cross-Site Request Forgery

3rd Party API /
Auth Server /

Resource Server

• An attacker initiates their own authorization request with their credentials

• They use your app's valid client id and redirect URI

• To the API, this is identical to a valid request as if the attacker was using
your app

3. Authorization Grant

Attacker
Your App / Client

User / Resource Owner

2. Authorization Grant

5. Authorization Grant

6. Access Token

1. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF - Cross-Site Request Forgery

3rd Party API /
Auth Server /

Resource Server

• The attacker receives a legitimate Authorization grant
containing a legitimate code

• This code is linked to the attackers account in the API

3. Authorization Grant

Attacker
Your App / Client

User / Resource Owner

2. Authorization Grant

5. Authorization Grant

6. Access Token

1. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF - Cross-Site Request Forgery

3rd Party API /
Auth Server /

Resource Server

• The attacker launches an XSRF attack by getting the user to click any link controlled by the attacker

• Respond with a 302 to send them to your app with a properly formatted query string with the
authorization code

• Most XSRF prevention (eg. SOP, SameSite cookie directive) don't help since these endpoints are
designed for cross-site requests

3. Authorization Grant

Attacker
Your App / Client

User / Resource Owner

2. Authorization Grant

5. Authorization Grant

6. Access Token

1. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF - Cross-Site Request Forgery

3rd Party API /
Auth Server /

Resource Server

• User is redirected to your app

• This makes the link seem legitimate since they never see the attacker's
content

• Your app sees an authorization code and does its thing

3. Authorization Grant

Attacker
Your App / Client

User / Resource Owner

2. Authorization Grant

5. Authorization Grant

6. Access Token

1. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF - Cross-Site Request Forgery

3rd Party API /
Auth Server /

Resource Server

• Your app trades the code in for an access token

• Your app links this token to the user!!

• Create/update their account with the access token

• Create an authentication token and give it to the user in a cookie

3. Authorization Grant

Attacker
Your App / Client

User / Resource Owner

2. Authorization Grant

5. Authorization Grant

6. Access Token

1. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF - Cross-Site Request Forgery

3rd Party API /
Auth Server /

Resource Server

Your App / Client

• When the user uses your app, API accesses are made on behalf of the
attacker (The access token is linked to the attacker)

• ex. If this is a bank, deposits go to the attacker's account

• ex. All private information the user sends is stored in the attacker's account

3. Authorization Grant

Attacker

User / Resource Owner

3. Authorization Grant

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF Prevention - State

1. Authorization Request

3rd Party API /
Auth Server /

Resource Server

Your App / Client

• To prevent this attack, generate a "state" value and add it to the
query string

• The state value is linked to the user initiating the request

• RFC suggest using a hash of their state token (eg. Session token)

User / Resource Owner

3. Authorization Grant

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF Prevention - State

1. Authorization Request

3rd Party API /
Auth Server /

Resource Server

Your App / Client

• If a state is present:

• The API sends it back in addition to the authorization code

• Your app verifies that it's the same state that was given to this user
in the authorization request

User / Resource Owner

2. Authorization Grant

5. Authorization Grant

6. Access Token

1. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF Prevention - State

3rd Party API /
Auth Server /

Resource Server

Your App / Client

• During an attack, the authorization grant will contain the attacker's state

• Or a value that was guessed/generated by the attack

• Important to have enough entropy that the attacker cannot guess the
user's state

3. Authorization Grant

Attacker

Refresh Tokens

User / Resource Owner

3. Authorization Grant

5. Authorization Grant

6. Access Token and Refresh Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

Refresh Tokens

1. Authorization Request

3rd Party API /
Auth Server /

Resource Server

Your App / Client

• Very common for the API to issue a refresh token in addition to the access token

• The access token expires in a short amount of time (1 hour for Spotify)

• When the access token expires, use the refresh token to obtain a new access
token [and sometimes a new refresh token]

Authorization Grant

Access Token and Refresh Token

API Access - Access Token Only

Private Data

Refresh Tokens

Resource
ServerYour App / Client

• If the authentication server and resource server are a single server -> refresh
tokens don't make much sense

• Authentication server handles all token generation and authentication

• Resource server only sees the access token and hosts the protected resources

Authentication
ServerRefresh Token

Access Token [and Refresh Token]

Authorization Grant

Access Token and Refresh Token

API Access - Access Token Only

Private Data

Refresh Tokens - Advantages (Security)

Resource
ServerYour App / Client

• The access token is used often and is sent to the resource server on each request

• If the access token is compromised, the attacker has a limited window to use it
before it expires

• It expires, use the refresh token to obtain a new access token, the attacker cannot
use the compromised token without stealing another one

Authentication
ServerRefresh Token

Access Token [and Refresh Token]

Authorization Grant

Access Token and Refresh Token

API Access - Access Token Only

Private Data

Refresh Tokens - Advantages (Performance)

Resource
ServerYour App / Client

• The access token must be verified on every request with the resource server

• This might involve this slow process:

• Sending an HTTP request to the auth server

• Auth server has a DB lookup, verifies, and responds

Authentication
ServerRefresh Token

Access Token [and Refresh Token]

Authorization Grant

Access Token and Refresh Token

API Access - Access Token Only

Private Data

Refresh Tokens - Advantages (Performance)

Resource
ServerYour App / Client

• A faster method is to make access token self contained and verifiable without the
auth server

• Encode or encrypt the token in a way that requires a private key to read/verify that is
only known to the auth/resource servers

• Resource server verifies the access token without talking to the auth server (fast)

Authentication
ServerRefresh Token

Access Token [and Refresh Token]

Compromised Tokens

Compromised Access Token
• The attacker can use the access token to make API calls on

behalf of the user

• These accesses will look legitimate since the access token is the
only value required for API access

• Even worse - If the tokens are self-contained, there's no
mechanism for revoking a token

• ie. No database lookups are involved. Where could we check
for validity?

• Countermeasure:

• Access tokens are short-lived to limit the amount of time a
compromised token can be used

Compromised Refresh Token
• Not a big deal if compromised since the attacker cannot use

it without authenticating as the client with the client secret

• Note that these tokens must be stored by our app in plain text

• Same is true for access tokens

• Countermeasures:

• The refresh token cannot be used without the client secret

• Keep the client secret a secret

• The API can revoke a refresh token at any time since the
auth server is involved, including DB lookup of your client
account, each time a refresh token is used

Compromised Client Secret
• The attacker can now authenticate as the client

• Can trade in authorization codes for access/refresh tokens

• Can trade in refresh tokens for new access tokens

• Cannot obtain authorization grants without control of the clients redirect URI

• Countermeasures:

• Attacker doesn't control our redirect URI (If they do, we have bigger
problems)

• API or client can revoke the secret and generate a new one

Alternate Flows

1. Authorization Request

2. Access Token

3. API Access

4. Private Client Data

Client Flow

3rd Party API /
Auth Server /

Resource Server

• A simplified flow used for a client to access the API on its own behalf

• Cannot access private user data (Not even your own. Note the difference between client and
your account)

• Can be used to access public information or client-specific endpoints

• Spotify: Can use this to look up public song/album/artist information

Your App / Client

User / Resource Owner
Running your app
without a server

Implicit/Device Flow

3rd Party API /
Auth Server /

Resource Server

• Similar to Client flow in its simplicity

• Used for public apps that cannot keep a secret

• There is no client secret and no client authentication

• eg. A front-end only web app; A self-contained mobile/desktop app

1. Authorization Request

2. Access Token

3. API Access

4. Private Data

User / Resource Owner
Running your app
without a server

1. Authorization Request

2. Access Token

3. API Access

4. Private Data

Implicit Flow

3rd Party API /
Auth Server /

Resource Server

• This flow should not be used when there is a server that can keep a secret

• Implicit flow is much less secure (It trusts the user with their access
token)

• Only use this when there's no other option

PKCE
• Proof Key for Code Exchange (Sometimes pronounced "Pixy")

• The implicit flow is vulnerable to Man-in-the-middle attacks (MITM)

• Add authorization grant back into the flow

• The authorization grant step involves sending the user away from your
native app to their web browser

• Browser sends them back to your app

• We lose our web protections since this communication is between
browser and native app

• This communication can be intercepted by other processes running on
the device

• An attacker can intercept the authorization code

• This would be the access token when using the implicit flow and it
would be game over

PKCE
• PKCE Flow:

• During the Authorization request, your app sends the
hash of a "code verifier" which is a random value

• When your app trades in the authorization code for an
access token, send the plain text code verifier

• This cannot be computed by the attacker, but is easily
verified by the API by hashing the code verifier

• This communication is an HTTP request made by your
app

• Much more difficult to intercept

