
OAuth 2.0 - Extras



User / Resource Owner

OAuth 2.0 - Authorization Code Flow

3rd Party API /  
Auth Server /  

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data



XSRF and State



User / Resource Owner

2. Authorization Grant

5. Authorization Grant

6. Access Token

1. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

XSRF - Cross-Site Request Forgery

3rd Party API /  
Auth Server /  

Resource Server

• An attacker initiates their own authorization request with their credentials


• They use your app's valid client id and redirect URI


• To the API, this is identical to a valid request as if the attacker was using 
your app
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XSRF - Cross-Site Request Forgery
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• The attacker receives a legitimate Authorization grant 
containing a legitimate code


• This code is linked to the attackers account in the API
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XSRF - Cross-Site Request Forgery
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• The attacker launches an XSRF attack by getting the user to click any link controlled by the attacker


• Respond with a 302 to send them to your app with a properly formatted query string with the 
authorization code


• Most XSRF prevention (eg. SOP, SameSite cookie directive) don't help since these endpoints are 
designed for cross-site requests
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XSRF - Cross-Site Request Forgery
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• User is redirected to your app


• This makes the link seem legitimate since they never see the attacker's 
content


• Your app sees an authorization code and does its thing
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XSRF - Cross-Site Request Forgery
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• Your app trades the code in for an access token


• Your app links this token to the user!!


• Create/update their account with the access token


• Create an authentication token and give it to the user in a cookie
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XSRF - Cross-Site Request Forgery
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• When the user uses your app, API accesses are made on behalf of the 
attacker (The access token is linked to the attacker)


• ex. If this is a bank, deposits go to the attacker's account


• ex. All private information the user sends is stored in the attacker's account
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• To prevent this attack, generate a "state" value and add it to the 
query string


• The state value is linked to the user initiating the request


• RFC suggest using a hash of their state token (eg. Session token)
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• If a state is present:


• The API sends it back in addition to the authorization code


• Your app verifies that it's the same state that was given to this user 
in the authorization request
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XSRF Prevention - State
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• During an attack, the authorization grant will contain the attacker's state


• Or a value that was guessed/generated by the attack


• Important to have enough entropy that the attacker cannot guess the 
user's state
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Refresh Tokens
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• Very common for the API to issue a refresh token in addition to the access token


• The access token expires in a short amount of time (1 hour for Spotify)


• When the access token expires, use the refresh token to obtain a new access 
token [and sometimes a new refresh token]
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Refresh Tokens

Resource 
ServerYour App / Client

• If the authentication server and resource server are a single server -> refresh 
tokens don't make much sense


• Authentication server handles all token generation and authentication


• Resource server only sees the access token and hosts the protected resources
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Refresh Tokens - Advantages (Security)
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• The access token is used often and is sent to the resource server on each request


• If the access token is compromised, the attacker has a limited window to use it 
before it expires


• It expires, use the refresh token to obtain a new access token, the attacker cannot 
use the compromised token without stealing another one
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Refresh Tokens - Advantages (Performance)

Resource 
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• The access token must be verified on every request with the resource server


• This might involve this slow process:


• Sending an HTTP request to the auth server


• Auth server has a DB lookup, verifies, and responds
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Refresh Tokens - Advantages (Performance)

Resource 
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• A faster method is to make access token self contained and verifiable without the 
auth server


• Encode or encrypt the token in a way that requires a private key to read/verify that is 
only known to the auth/resource servers


• Resource server verifies the access token without talking to the auth server (fast)

Authentication 
ServerRefresh Token

Access Token [and Refresh Token]



Compromised Tokens



Compromised Access Token
• The attacker can use the access token to make API calls on 

behalf of the user


• These accesses will look legitimate since the access token is the 
only value required for API access


• Even worse - If the tokens are self-contained, there's no 
mechanism for revoking a token


• ie. No database lookups are involved. Where could we check 
for validity?


• Countermeasure:


• Access tokens are short-lived to limit the amount of time a 
compromised token can be used



Compromised Refresh Token
• Not a big deal if compromised since the attacker cannot use 

it without authenticating as the client with the client secret


• Note that these tokens must be stored by our app in plain text


• Same is true for access tokens


• Countermeasures:


• The refresh token cannot be used without the client secret


• Keep the client secret a secret


• The API can revoke a refresh token at any time since the 
auth server is involved, including DB lookup of your client 
account, each time a refresh token is used



Compromised Client Secret
• The attacker can now authenticate as the client


• Can trade in authorization codes for access/refresh tokens


• Can trade in refresh tokens for new access tokens


• Cannot obtain authorization grants without control of the clients redirect URI


• Countermeasures:


• Attacker doesn't control our redirect URI (If they do, we have bigger 
problems)


• API or client can revoke the secret and generate a new one



Alternate Flows
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Client Flow
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• A simplified flow used for a client to access the API on its own behalf


• Cannot access private user data (Not even your own. Note the difference between client and 
your account)


• Can be used to access public information or client-specific endpoints


• Spotify: Can use this to look up public song/album/artist information

Your App / Client
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• Similar to Client flow in its simplicity


• Used for public apps that cannot keep a secret


• There is no client secret and no client authentication


• eg. A front-end only web app; A self-contained mobile/desktop app
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Implicit Flow
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• This flow should not be used when there is a server that can keep a secret


• Implicit flow is much less secure (It trusts the user with their access 
token)


• Only use this when there's no other option



PKCE
• Proof Key for Code Exchange (Sometimes pronounced "Pixy")


• The implicit flow is vulnerable to Man-in-the-middle attacks (MITM)


• Add authorization grant back into the flow


• The authorization grant step involves sending the user away from your 
native app to their web browser


• Browser sends them back to your app


• We lose our web protections since this communication is between 
browser and native app


• This communication can be intercepted by other processes running on 
the device


• An attacker can intercept the authorization code 


• This would be the access token when using the implicit flow and it 
would be game over



PKCE
• PKCE Flow:


• During the Authorization request, your app sends the 
hash of a "code verifier" which is a random value


• When your app trades in the authorization code for an 
access token, send the plain text code verifier


• This cannot be computed by the attacker, but is easily 
verified by the API by hashing the code verifier


• This communication is an HTTP request made by your 
app


• Much more difficult to intercept


