Databases

Databases

o Software that stores data on disk

e Runs as a server and IS communicated
with via TCP sockets

e Provides an API to store/retrieve data
e The software handles the low-level file |10

e Allows us to think about our data, not
how to store it

e Provides many optimizations

Databases

o We'll look at 2 different databases

e Both are pieces of software that must be downloaded,
installed, ran, then connected to via TCP

e MongoDB

e An unstructured server based on document stores

e mySQL

e A server implementing SQL (Structured Query
Language)

MongoDB

e Runs on port 27017 (By default)
e A document-based database

e Stores data in a structure very similar to
JSON

e |n python/JS
e |nsert dictionaries/objects directly

e Fach object is stored in a collection

MongoDB - Connection

e Download a connection library and use to establish a
connection with MongoDB

e MongoDB is separated into several layers
e Databases - Named by Strings; Contains collections

e (Collections - Where the data is stored; similar to a SQL
table

e Access your collections to insert/retrieve/update/delete data

from pymongo import MongoClient

mongo client = MongoClient("localhost")
db = mongo client["cse312"]
chat collection = db["'chat"]

MongoDB - Insert Data

e |nsert dictionaries/objects directly

 For languages without a data structure
comparable to dictionaries/objects

e More work to do to prepare your data for
Mongo

chat collection.insert one({"username”: "hartloff”, "message”: "hello"})

MongoDB - Security

* No Mongo injection attacks

e Mongo does not rely on parsing
statements as strings

* Any injected code would be treated as
values

chat collection.insert one({"username”: "hartloff”, "message”: "hello"})

MongoDB - Retrieve Data

 Retrieve documents using find

* Find takes a key-value store and returns all
documents with those values stored at the
given keys

e EX.{"username”: "hartloff"} returns all
documents with a username of "hartloft"

* Jo retrieve all documents, use an empty key-
value store {}

my_data = chat_collection.find({"username": "hartloff"})

all data = chat_collection.find({})

MySQL

e | istens for TCP connections on port 3306
(By default)

e |nstall a library for your language that will
connect to the MySQL server

e SQL is based on tables with rows and
column

e Similar in structure to CSV except the
values have types other than string

MySQL - Connection

e MySQL runs and you install a library to connect to it
e Connect to MySQL Server by providing:

* The url of the database

e username/password for the database

* Whatever you chose when setting up the
database

val url = "jdbc:mysql://localhost/mysql”
val username = "root"
val password = "12345678"

var connection: Connection = DriverManager.getConnection(url, username, password)

MySQL - Insert Data

e Once connected, we can send SQL
statements to the server

val statement = connection.createStatement()

statement.execute("CREATE TABLE IF NOT EXISTS players (username TEXT, points INT)")

e |f using inputs from the user, always use
prepared statements

val statement = connection.prepareStatement("INSERT INTO players VALUE (?, ?)")

statement.setString(1, "mario")
statement.setInt(2, 10)

statement.execute()

MySQL - Security

e Not using prepared statements?
e Vulnerable to SQL injection attacks

e |f you concatenate user inputs directly into your SQL
statements

e Attacker chooses a username of "';DROP TABLE
players;"

e You lose all your data

e Even worse, they find a way to access the entire
database and steal other users' data

e SQL Injection is the most common successful attack
on servers

MySQL - Retrieve Data

e Send queries to pull data from the
database

val statement = connection.createStatement()
val result: ResultSet = statement.executeQuery("SELECT * FROM players")

var allScores: Map[String, Int] = Map()

while (result.next()) {
val username = result.getString("username")
val score = result.getInt("points")
allScores = allScores + (username —> score)

}

MongoDB vs. SQL

e MongoDB is unstructured
e Can add objects in any format to a collection
e Can mix formats in a single collection

e |e. In a single collection the documents can have
different attributes

e SQL is structured (That's what the S stands for)
e Jable columns must be pre-defined
e All rows have the same attributes
e Adding a column can be difficult

e Fast!

MongoDB vs. SQL

e Hot Take

* MongoDB is best for prototyping when
the structure of your data is constantly
changing

 Jake advantage of the flexibility

e SQL is best once your data has a
defined structure

e [ake advantage of the efficiency

Docker Compose Revisited

docker-compose.yml

version: '3.3'
services:
mongo:
image: mongo:4.2.5
app:

build: .
environment:
WAIT_HOSTS: mongo:27017

ports:
— '8080:8000°

e | et's modify our docker compose
configuration to run our database

Docker Compose

docker-compose.yml
version: '3.3°

services:

mongo:
image: mongo:4.2.5
app:

build: .
environment:
WAIT_HOSTS: mongo:27017

ports:
— '8080:8000°

e "services" is a list of all the images/
containers to create

e \We'll add a second service for the DB

Docker Compose

docker-compose.yml

version: '3.3°
services:

image: mongo:4.2.5

]
!u11d:

environment:

WAIT_HOSTS: mongo:27017
ports:

— '8080:8000'

e Name each service

e These names are used as the hostnames for each
container

e Used to communicate between containers

Docker Compose

docker-compose.yml

version: '3.3'
services:
mongo:
image: mongo:4.2.5
app:

build:
environment:
WAIT_HOSTS: mongo:27017

ports:
— '8080:8000°

e This service named 'mongo’ uses a pre-built image
e Same as having a 1-line Dockerfile:

e "FROM mongo:4.2.5"

e No Dockerfile iIs needed

Docker Compose

docker-compose.yml

version: '3.3'
services:
mongo:
image: mongo:4.2.5
app:

build: .

WAIT_HOSTS: mongo:27017

ports:
— '8080:8000°

e Use 'environment' to set any needed
environment variables

e |f using MySQL, set variables for your username/
password

Docker Compose

docker-compose.ymi

version: '3.3° e \We use an environment

services:

mongo: variable to tell our app

image: mongo:4.2.5

app: to wait until the
build:

environment: database is running
WAIT_HOSTS: mongo:27017

ports: before connecting to it
— '8080:8000'°

FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker—-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD && python app.py

Docker Compose

docker-compose.ymi
version: '3.3' e |f the app runs before the

services:

mongo: database, it won't be able to

ap:rpagm mongo:4.2.5 establish a DB connection

build: . | .
environment: e Solution: Wait for the DB to

WAIT HOSTS: 127017 :
ortsr Fons start before running the app

— '8080:8000°
FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker—-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD && python app.py

Docker Compose

docker-compose.ymi

version: '3.3' e This solution from

services:

mongo: github user "ufoscout”

image: mongo:4.2.5
app: works well
build:
environment:
WAIT_HOSTS: mongo:27017
ports:
— '8080:8000°

FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker—-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD && python app.py

Docker Compose

docker-compose.yml

version: '3.3'
services:
mongo:
image: mongo:4.2.5
app:

build: .
environment:
WAIT_HOSTS: mongo:27017

ports:
— '8080:8000°

e This file Is used to build both images and
run both containers using docker-compose

Docker Compose

docker-compose.ymi

version: '3.3°
services:

image: mongo:4.2.5 —

EUi¥d= : mongo_client = MongoClient('mongo")
environment:

WAIT_HOSTS: mongo:27017
ports:
— '8080:8000°

e Recall that we chose names for each service
e \WWhen connecting to the database in your app

e The service name Is the hosthame for the container

Docker Compose

docker-compose.ymi

version: '3.3°
services:

IEIIIII mohgo—cltient =MongoClient{ ' localhost')

image: mongo:4.2.5

EUi¥d= : mongo_client = MongoClient('mongo")
environment:

WAIT_HOSTS: mongo:27017
ports:
— '8080:8000°

e Use the name of the service

e docker-compose will resolve this hosthame
to the appropriate container

Docker Compose

docker-compose.ymi

version: °
services:

image: mongo: 4.2.5

u1'¥d: . mongo_client = MongoClient('mysupercooldatabase')
environment:

WAIT_HOSTS: mongo:27017
ports:
— '8080:8000°

e \We can name our services whatever we want

* Make sure you are consistent!

Running Your App

e docker-compose up --build --force-recreate
e Will now start both containers

e Use the service name as the host name to
communicate across containers

HTML Templates

The Problem

e \We want to serve custom HTML

 You want to build a chat feature for your app
e Users will submit their messages
* Messages will appear to all users
e Messages are contained in your HTML

e How do we serve HIML that will change as
users send messages?

HTML Templates

Instead of writing complete HTML files
e Write HTML templates

An HTML template is an "incomplete” HTML file that is
used to generate complete pages

Use additional markup to add placeholders in the HTML

Replace the placeholders with data at runtime

HTML Templates

e Example template with 3 placeholders
e The title, description, and image_filename will be replaced later

e Provide values for these 3 placeholders to serve a response

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

<hl>{{title}}</hl>

<p>{{description}}</p>

</body>
</html>

HTML Templates

* Jo substitute the placeholders
e Use any string manipulation that gets the job done
 Find/replace is the simplest solution

* May want more advanced approaches if you want to add more functionality

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

<hl>{{title}}</hl>

<p>{{description}}</p>

</body>
</html>

Common Template
Features

e | OOpSs
e [o add loops to your templates

e Choose syntax for the start and end of the loop

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

{{loop}}

<h6>{{content_from _data_structure}}</h6>
{{end_loop}}

</body>
</html>

Common Template
Features

e Use string manipulation to find the start and end tags
e |terate over your data

e Add the contained HTML with the placeholder replaced for each
value of your data

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

{{loop}}

<h6>{{content_from_data_structure}}</h6>
{{end_loop}}

</body>
</html>

Common Template
Features

e Conditionals
e Can use similar approach as loops

e Choose syntax for the start and end of each block in the
conditional

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

{{1f cookie_set}}
<h6>Welcome back!</h6>

{{else}}
<h6>Welcome!</h6>

{{end_1if}}

</body>
</html>

Common Template
Features

e Search for your tags
e Extract and evaluate the conditional
e Choose how this will be evaluated

 Add the appropriate block of HTML to the page

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

{{1f cookie_set}}
<h6>Welcome back!</h6>

{{else}}
<h6>Welcome!</h6>

{{end_1if}}

</body>
</html>

