
Databases

• Software that stores data on disk

• Runs as a server and is communicated
with via TCP sockets

• Provides an API to store/retrieve data

• The software handles the low-level file IO

• Allows us to think about our data, not
how to store it

• Provides many optimizations

Databases

• We'll look at 2 different databases

• Both are pieces of software that must be downloaded,
installed, ran, then connected to via TCP

• MongoDB

• An unstructured server based on document stores

• mySQL

• A server implementing SQL (Structured Query
Language)

Databases

• Runs on port 27017 (By default)

• A document-based database

• Stores data in a structure very similar to
JSON

• In python/JS

• Insert dictionaries/objects directly

• Each object is stored in a collection

MongoDB

• Download a connection library and use to establish a
connection with MongoDB

• MongoDB is separated into several layers

• Databases - Named by Strings; Contains collections

• Collections - Where the data is stored; similar to a SQL
table

• Access your collections to insert/retrieve/update/delete data

MongoDB - Connection

from pymongo import MongoClient

mongo_client = MongoClient("localhost")
db = mongo_client["cse312"]
chat_collection = db["chat"]

• Insert dictionaries/objects directly

• For languages without a data structure
comparable to dictionaries/objects

• More work to do to prepare your data for
Mongo

MongoDB - Insert Data

chat_collection.insert_one({"username": "hartloff", "message": "hello"})

• No Mongo injection attacks

• Mongo does not rely on parsing
statements as strings

• Any injected code would be treated as
values

MongoDB - Security

chat_collection.insert_one({"username": "hartloff", "message": "hello"})

• Retrieve documents using find

• Find takes a key-value store and returns all
documents with those values stored at the
given keys

• Ex. {"username": "hartloff"} returns all
documents with a username of "hartloff"

• To retrieve all documents, use an empty key-
value store {}

MongoDB - Retrieve Data

my_data = chat_collection.find({"username": "hartloff"})
all_data = chat_collection.find({})

• Listens for TCP connections on port 3306
(By default)

• Install a library for your language that will
connect to the MySQL server

• SQL is based on tables with rows and
column

• Similar in structure to CSV except the
values have types other than string

MySQL

• MySQL runs and you install a library to connect to it

• Connect to MySQL Server by providing:

• The url of the database

• username/password for the database

• Whatever you chose when setting up the
database

MySQL - Connection

val url = "jdbc:mysql://localhost/mysql"
val username = "root"
val password = "12345678"

var connection: Connection = DriverManager.getConnection(url, username, password)

• Once connected, we can send SQL
statements to the server

MySQL - Insert Data

val statement = connection.createStatement()
statement.execute("CREATE TABLE IF NOT EXISTS players (username TEXT, points INT)")

val statement = connection.prepareStatement("INSERT INTO players VALUE (?, ?)")

statement.setString(1, "mario")
statement.setInt(2, 10)

statement.execute()

• If using inputs from the user, always use
prepared statements

• Not using prepared statements?

• Vulnerable to SQL injection attacks

• If you concatenate user inputs directly into your SQL
statements

• Attacker chooses a username of "';DROP TABLE
players;"

• You lose all your data

• Even worse, they find a way to access the entire
database and steal other users' data

• SQL Injection is the most common successful attack
on servers

MySQL - Security

• Send queries to pull data from the
database

MySQL - Retrieve Data

val statement = connection.createStatement()
val result: ResultSet = statement.executeQuery("SELECT * FROM players")

var allScores: Map[String, Int] = Map()

while (result.next()) {
 val username = result.getString("username")
 val score = result.getInt("points")
 allScores = allScores + (username -> score)
}

• MongoDB is unstructured

• Can add objects in any format to a collection

• Can mix formats in a single collection

• Ie. In a single collection the documents can have
different attributes

• SQL is structured (That's what the S stands for)

• Table columns must be pre-defined

• All rows have the same attributes

• Adding a column can be difficult

• Fast!

MongoDB vs. SQL

• Hot Take

• MongoDB is best for prototyping when
the structure of your data is constantly
changing

• Take advantage of the flexibility

• SQL is best once your data has a
defined structure

• Take advantage of the efficiency

MongoDB vs. SQL

Docker Compose Revisited
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• Let's modify our docker compose
configuration to run our database

• "services" is a list of all the images/
containers to create

• We'll add a second service for the DB

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• Name each service

• These names are used as the hostnames for each
container

• Used to communicate between containers

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• This service named 'mongo' uses a pre-built image

• Same as having a 1-line Dockerfile:

• "FROM mongo:4.2.5"

• No Dockerfile is needed

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• Use 'environment' to set any needed
environment variables

• If using MySQL, set variables for your username/
password

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• We use an environment
variable to tell our app
to wait until the
database is running
before connecting to it

Docker Compose

FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD /wait && python app.py

version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• If the app runs before the
database, it won't be able to
establish a DB connection

• Solution: Wait for the DB to
start before running the app

Docker Compose

FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD /wait && python app.py

version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• This solution from
github user "ufoscout"
works well

Docker Compose

FROM python:3.8.2

ENV HOME /root
WORKDIR /root

COPY . .
RUN pip install -r requirements.txt

EXPOSE 8000

ADD https://github.com/ufoscout/docker-compose-wait/releases/download/2.2.1/wait /wait
RUN chmod +x /wait

CMD /wait && python app.py

version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• This file is used to build both images and
run both containers using docker-compose

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

• Recall that we chose names for each service

• When connecting to the database in your app

• The service name is the hostname for the container

Docker Compose
version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

mongo_client = MongoClient('mongo')

mongo_client = MongoClient('localhost')

version: '3.3'
services:
 mongo:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

• Use the name of the service

• docker-compose will resolve this hostname
to the appropriate container

Docker Compose
docker-compose.yml

mongo_client = MongoClient('mongo')

mongo_client = MongoClient('localhost')

• We can name our services whatever we want

• Make sure you are consistent!

Docker Compose
version: '3.3'
services:
 mysupercooldatabase:
 image: mongo:4.2.5
 app:
 build: .
 environment:
 WAIT_HOSTS: mongo:27017
 ports:
 - '8080:8000'

docker-compose.yml

mongo_client = MongoClient('mysupercooldatabase')

mongo_client = MongoClient('localhost')

• docker-compose up --build --force-recreate

• Will now start both containers

• Use the service name as the host name to
communicate across containers

Running Your App

HTML Templates

The Problem
• We want to serve custom HTML

• You want to build a chat feature for your app

• Users will submit their messages

• Messages will appear to all users

• Messages are contained in your HTML

• How do we serve HTML that will change as
users send messages?

HTML Templates
• Instead of writing complete HTML files

• Write HTML templates

• An HTML template is an "incomplete" HTML file that is
used to generate complete pages

• Use additional markup to add placeholders in the HTML

• Replace the placeholders with data at runtime

HTML Templates
• Example template with 3 placeholders

• The title, description, and image_filename will be replaced later

• Provide values for these 3 placeholders to serve a response

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

<h1>{{title}}</h1>

<p>{{description}}</p>

</body>
</html>

HTML Templates
• To substitute the placeholders

• Use any string manipulation that gets the job done

• Find/replace is the simplest solution

• May want more advanced approaches if you want to add more functionality

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

<h1>{{title}}</h1>

<p>{{description}}</p>

</body>
</html>

Common Template
Features

• Loops

• To add loops to your templates

• Choose syntax for the start and end of the loop

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

{{loop}}
<h6>{{content_from_data_structure}}</h6>
{{end_loop}}

</body>
</html>

Common Template
Features

• Use string manipulation to find the start and end tags

• Iterate over your data

• Add the contained HTML with the placeholder replaced for each
value of your data

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

{{loop}}
<h6>{{content_from_data_structure}}</h6>
{{end_loop}}

</body>
</html>

Common Template
Features

• Conditionals

• Can use similar approach as loops

• Choose syntax for the start and end of each block in the
conditional

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

{{if cookie_set}}
<h6>Welcome back!</h6>
{{else}}
<h6>Welcome!</h6>
{{end_if}}

</body>
</html>

Common Template
Features

• Search for your tags

• Extract and evaluate the conditional

• Choose how this will be evaluated

• Add the appropriate block of HTML to the page

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

{{if cookie_set}}
<h6>Welcome back!</h6>
{{else}}
<h6>Welcome!</h6>
{{end_if}}

</body>
</html>

