
Databases

• Software that stores data on disk

• Runs as a server and is communicated
with via TCP sockets

• Provides an API to store/retrieve data

• The software handles the low-level file IO

• Allows us to think about our data, not
how to store it

• Provides many optimizations

Databases

• We'll look at 2 different databases

• Both are pieces of software that must be downloaded,
installed, ran, then connected to via TCP

• MongoDB

• An unstructured server based on document stores

• mySQL

• A server implementing SQL (Structured Query
Language)

Databases

• Runs on port 27017 (By default)

• A document-based database

• Stores data in a structure very similar to
JSON

• In python/JS

• Insert dictionaries/objects directly

• Each object is stored in a collection

MongoDB

• Download a connection library and use to establish a
connection with MongoDB

• MongoDB is separated into several layers

• Databases - Named by Strings; Contains collections

• Collections - Where the data is stored; similar to a SQL
table

• Access your collections to insert/retrieve/update/delete data

MongoDB - Connection

from pymongo import MongoClient

mongo_client = MongoClient("localhost")
db = mongo_client["cse312"]
chat_collection = db["chat"]

• Insert dictionaries/objects directly

• For languages without a data structure
comparable to dictionaries/objects

• More work to do to prepare your data for
Mongo

MongoDB - Insert Data

chat_collection.insert_one({"username": "hartloff", "message": "hello"})

• No Mongo injection attacks

• Mongo does not rely on parsing
statements as strings

• Any injected code would be treated as
values

MongoDB - Security

chat_collection.insert_one({"username": "hartloff", "message": "hello"})

• Retrieve documents using find

• Find takes a key-value store and returns all
documents with those values stored at the
given keys

• Ex. {"username": "hartloff"} returns all
documents with a username of "hartloff"

• To retrieve all documents, use an empty key-
value store {}

MongoDB - Retrieve Data

my_data = chat_collection.find({"username": "hartloff"})
all_data = chat_collection.find({})

• Listens for TCP connections on port 3306
(By default)

• Install a library for your language that will
connect to the MySQL server

• SQL is based on tables with rows and
column

• Similar in structure to CSV except the
values have types other than string

MySQL

MySQL - Insert Data

val statement = connection.prepareStatement("INSERT INTO players VALUE (?, ?)")

statement.setString(1, "mario")
statement.setInt(2, 10)

statement.execute()

• If using inputs from the user, always use
prepared statements

• Not using prepared statements?

• Vulnerable to SQL injection attacks

• If you concatenate user inputs directly into your SQL
statements

• Attacker chooses a username of "';DROP TABLE
players;"

• You lose all your data

• Even worse, they find a way to access the entire
database and steal other users' data

• SQL Injection is the most common successful attack
on servers

MySQL - Security

• MongoDB is unstructured

• Can add objects in any format to a collection

• Can mix formats in a single collection

• Ie. In a single collection the documents can have
different attributes

• SQL is structured (That's what the S stands for)

• Table columns must be pre-defined

• All rows have the same attributes

• Adding a column can be difficult

• Fast!

MongoDB vs. SQL

• Hot Take

• MongoDB is best for prototyping when
the structure of your data is constantly
changing

• Take advantage of the flexibility

• SQL is best once your data has a
defined structure

• Take advantage of the efficiency

MongoDB vs. SQL

• For the HW

• MongoDB is required

• For the project

• Use any DB you choose

MongoDB vs. SQL

• Choose 1:

• Download and install MongoDB and run it on
your device

• Run MongoDB using Docker (recommended)

Running MongoDB

• Download and install MongoDB and run it on
your device

• Go to Mongo’s website and follow the
instructions

• Mongo will run locally on your machine and
listen for connections on port 27017

• Connect using the host “localhost”

Running MongoDB

• Run MongoDB using Docker (recommended)

• Install docker

• Run the command:

• docker run -d -p 27017:27017 mongo:latest

• This uses docker to run mongo in a container

Running MongoDB

• Run MongoDB using Docker (recommended)

• docker run -d -p 27017:27017 mongo:latest

• Run a container using the mongo:latest
image

• Map localhost port 27017 to port 27017
inside the container

• Now you can connect to the DB on “localhost”

Running MongoDB

• Run MongoDB using Docker compose

• Alternatively, use the provided docker
compose file from the HW handout

• docker compose -f docker-compose.db-
only.yml up -d

• Same effect as the previous docker command

Running MongoDB

• Run MongoDB using Docker compose

• Last option: run the full app using docker compose
using the docker-compose file from the HW handout

• docker compose up —build —force-recreate

• Runs the database and your app

• Rebuilds your app if you made changes

• Connects to the database on host “mongo”

Running MongoDB

• However you choose to run your database:

• Use the setup in database.py of the HW
handout to connect to your DB

• Dynamically connects to either “localhost” of
“mongo” depending on how it was started

• Let’s you not have to think about the DB host
that much

Running MongoDB

• If you use any “localhost” method to run your
DB:

• Run your app by running server.py

Running Your App

HTML Templates

HTML Templates
• Instead of writing complete HTML files

• Write HTML templates

• An HTML template is an "incomplete" HTML file that is
used to generate complete pages

• Use additional markup to add placeholders in the HTML

• Replace the placeholders with data at runtime

HTML Templates
• Example template with 3 placeholders

• The title, description, and image_filename will be replaced later

• Provide values for these 3 placeholders to serve a response

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

<h1>{{title}}</h1>

<p>{{description}}</p>

</body>
</html>

HTML Templates
• To substitute the placeholders

• Use any string manipulation that gets the job done

• Find/replace is the simplest solution

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

<h1>{{title}}</h1>

<p>{{description}}</p>

</body>
</html>

HTML Templates
• On the HW:

• layout.html contains all the HTML that is shown on every
page (navigation, structur, etc)

• layout.html has one placeholder - {{content}} - which is
where you’ll insert all the HTML for the specific page that
was requested

• To render a page, eg. index.html, replace {{content}} with
everything read from index.html

• Send the resulting rendered page to the client

Common Template
Features

• Loops

• To add loops to your templates

• Choose syntax for the start and end of the loop

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

{{loop}}
<h6>{{content_from_data_structure}}</h6>
{{end_loop}}

</body>
</html>

Common Template
Features

• Conditionals

• Can use similar approach as loops

• Choose syntax for the start and end of each block in the
conditional

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>This page was generated from a template</title>
</head>
<body>

{{if cookie_set}}
<h6>Welcome back!</h6>
{{else}}
<h6>Welcome!</h6>
{{end_if}}

</body>
</html>

