Databases

Databases

o Software that stores data on disk

e Runs as a server and IS communicated
with via TCP sockets

e Provides an API to store/retrieve data
e The software handles the low-level file |10

e Allows us to think about our data, not
how to store it

e Provides many optimizations

Databases

o We'll look at 2 different databases

e Both are pieces of software that must be downloaded,
installed, ran, then connected to via TCP

e MongoDB

e An unstructured server based on document stores

e mySQL

e A server implementing SQL (Structured Query
Language)

MongoDB

e Runs on port 27017 (By default)
e A document-based database

e Stores data in a structure very similar to
JSON

e |n python/JS
e |nsert dictionaries/objects directly

e Fach object is stored in a collection

MongoDB - Connection

e Download a connection library and use to establish a
connection with MongoDB

e MongoDB is separated into several layers
e Databases - Named by Strings; Contains collections

e (Collections - Where the data is stored; similar to a SQL
table

e Access your collections to insert/retrieve/update/delete data

from pymongo import MongoClient

mongo client = MongoClient("localhost")
db = mongo client["cse312"]
chat collection = db["'chat"]

MongoDB - Insert Data

e |nsert dictionaries/objects directly

 For languages without a data structure
comparable to dictionaries/objects

e More work to do to prepare your data for
Mongo

chat collection.insert one({"username”: "hartloff”, "message”: "hello"})

MongoDB - Security

* No Mongo injection attacks

e Mongo does not rely on parsing
statements as strings

* Any injected code would be treated as
values

chat collection.insert one({"username”: "hartloff”, "message”: "hello"})

MongoDB - Retrieve Data

 Retrieve documents using find

* Find takes a key-value store and returns all
documents with those values stored at the
given keys

e EX.{"username”: "hartloff"} returns all
documents with a username of "hartloft"

* Jo retrieve all documents, use an empty key-
value store {}

my_data = chat_collection.find({"username": "hartloff"})

all data = chat_collection.find({})

MySQL

e | istens for TCP connections on port 3306
(By default)

e |nstall a library for your language that will
connect to the MySQL server

e SQL is based on tables with rows and
column

e Similar in structure to CSV except the
values have types other than string

MySQL - Insert Data

e |f using inputs from the user, always use
prepared statements

val statement = connection.prepareStatement("INSERT INTO players VALUE (?, ?)")

statement.setString(1, "mario")

statement.setInt(2, 10)

statement.execute()

MySQL - Security

e Not using prepared statements?
e Vulnerable to SQL injection attacks

e |f you concatenate user inputs directly into your SQL
statements

e Attacker chooses a username of "';DROP TABLE
players;"

e You lose all your data

e Even worse, they find a way to access the entire
database and steal other users' data

e SQL Injection is the most common successful attack
on servers

MongoDB vs. SQL

e MongoDB is unstructured
e Can add objects in any format to a collection
e Can mix formats in a single collection

e |e. In a single collection the documents can have
different attributes

e SQL is structured (That's what the S stands for)
e Jable columns must be pre-defined
e All rows have the same attributes
e Adding a column can be difficult

e Fast!

MongoDB vs. SQL

e Hot Take

* MongoDB is best for prototyping when
the structure of your data is constantly
changing

 Jake advantage of the flexibility

e SQL is best once your data has a
defined structure

e [ake advantage of the efficiency

MongoDB vs. SQL

e Forthe HW
e MongoDB is required

* [or the project

e Use any DB you choose

Running MongoDB

e Choose 1:

e Download and install MongoDB and run it on
your device

e Run MongoDB using Docker (recommended)

Running MongoDB

Download and install MongoDB and run it on
your device

Go to Mongo’s website and follow the
Instructions

Mongo will run locally on your machine and
isten for connections on port 27017

Connect using the host “localhost”

Running MongoDB

e Run MongoDB using Docker (recommended)

e |nstall docker
e Run the command:
e dockerrun-d -p 27017:27017 mongo:latest

 [his uses docker to run mongo Iin a container

Running MongoDB

e Run MongoDB using Docker (recommended)

e dockerrun-d -p 27017:27017 mongo:latest

e Run a container using the mongo:latest
Image

e Map localhost port 27017 to port 27017
INside the container

* Now you can connect to the DB on “localhost”

Running MongoDB

Run MongoDB using Docker compose

Alternatively, use the provided docker
compose file from the HW handout

docker compose -f docker-compose.db-
only.yml up -d

Same effect as the previous docker command

Running MongoDB

e Run MongoDB using Docker compose

e | ast option: run the full app using docker compose
using the docker-compose file from the HW handout

e docker compose up —build —force-recreate
e Runs the database and your app
 Rebuilds your app If you made changes

e Connects to the database on host “mongo”

Running MongoDB

e However you choose to run your database:

e Use the setup in database.py of the HW
handout to connect to your DB

e Dynamically connects to either “localhost” of
“mongo” depending on how it was started

e | et’s you not have to think about the DB host
that much

Running Your App

e |f you use any “localhost” method to run your
B]=}

e Run your app by running server.py

HTML Templates

HTML Templates

Instead of writing complete HTML files
e Write HTML templates

An HTML template is an "incomplete” HTML file that is
used to generate complete pages

Use additional markup to add placeholders in the HTML

Replace the placeholders with data at runtime

HTML Templates

e Example template with 3 placeholders
e The title, description, and image_filename will be replaced later

e Provide values for these 3 placeholders to serve a response

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

<hl>{{title}}</hl>

<p>{{description}}</p>

</body>
</html>

HTML Templates

e Jo substitute the placeholders

e Use any string manipulation that gets the job done

e Find/replace is the simplest solution

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

<hl>{{title}}</hl>

<p>{{description}}</p>

</body>
</html>

HTML Templates

e On the HW:.:

e layout.ntml contains all the HI ML that is shown on every
page (navigation, structur, etc)

e |layout.nhtml has one placeholder - {{content}} - which is
where you’ll insert all the HTML for the specific page that

was requested

e To render a page, eg. index.html, replace {{content}} with
everything read from index.html

e Send the resulting rendered page to the client

Common Template
Features

e | OOpSs
e [o add loops to your templates

e Choose syntax for the start and end of the loop

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

{{loop}}

<h6>{{content_from _data_structure}}</h6>
{{end_loop}}

</body>
</html>

Common Template
Features

e Conditionals
e Can use similar approach as loops

e Choose syntax for the start and end of each block in the
conditional

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>This page was generated from a template</title>
</head>
<body>

{{1f cookie_set}}
<h6>Welcome back!</h6>

{{else}}
<h6>Welcome!</h6>

{{end_1if}}

</body>
</html>

