
Authentication



• Everything we've built so far treats 
every user the same and delivers the 
same content to all visitors


• Only exception was setting a cookie to 
count visits


• For many features of a web app we 
want to remember a user across 
multiple visits and verify their identity

User Accounts



• Registration


• Users can create an account on your app


• Choose a username and password


• Authentication


• Verify that a user is [likely] a registered account 
holder by providing their username/password


• Log them into your app


• Serve content specific to them

User Accounts



• Registration


• Can be a simple web form


• At a minimum, provide a 
username and password


• Common to affiliate an account 
with a valid email address


• And verify that email


• Limits the number of bots that 
register

User Accounts



• On the server


• Store each username/password in a 
database


• This data must persist so the users can 
log in even after a server restart


• What if this database is compromised?


• Perhaps by a SQL injection attack

Authentication



• NEVER store passwords as plain text


• Not even the admins of a website should 
know the passwords of their users


• We do this by hashing the passwords 
and storing only the hashes 

Authentication



Hash Function
•A function that converts one value into another with certain 

properties


•Typically a fixed length value


•Used to build hash tables


•Among other applications


•Hash functions might not add any security!



Cryptographic Hash 
Function

• A hash function that is meant for secure purposes


• Goal of being a one-way function


• Easy to compute a hash value from plain text


• Very difficult to compute the plain text of a given 
hash


• Hashes can be shared without compromising the plain text

5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8 

password



Cryptographic Hash 
Function

• Only a cryptographic hash of your password is stored


• By only storing the hash of a password:


• Even the admins of a site can’t read your password!


• SHA256 is a commonly used cryptographic hash function


• https://www.xorbin.com/tools/sha256-hash-calculator

https://www.xorbin.com/tools/sha256-hash-calculator
https://www.xorbin.com/tools/sha256-hash-calculator


SHA256
• Runs input through multiple 

rounds of bit-level 
manipulation


• Easy (Fast) to compute


• Very difficult to compute in 
reverse

Ref: opencores.org



Brute Force Attack
• Storing SHA256 hashes is not always secure!


• Surprisingly common misconception

• Hashes are easy to compute, but hard to reverse


• To attack a hash:


• Hash every possible password


• If the hashes match, you know the password



Entropy
• Entropy is a measure of uncertainty


• Number of guesses required to guarantee a hash is matched


• Examples: 


• If you know the plain text is a single lowercase letter the entropy is 26


• If it’s two lowercase letters, the entropy is 26^2 = 676


• If it’s two letters that can be upper or lower case, 52^2 = 2704


• Tend to measure the “bits of entropy”


• The log base 2 of these values


• Typically consider >=80 bits of entropy to be secure



Dictionary Attack
• More advanced version of the brute force attack


• Use common words with common replacements


• a -> @


• O -> 0


• i -> !


• Real words are easier to remember


• Attackers take advantage of this


• Lists of common passwords are freely available


• Start with these



Rainbow Table
• A table containing the start and end of "chains" of hashes


• Repeatedly rehash the start to reach the end


• To attack a hash:


• Rehash until you reach the end of a chain


• Rehash the beginning of the chain to find the value 
before the hash


• Takes a long time to compute a large table


• Effectively trades space for time once the table is 
computed



Salting
• Salt hashes to prevent attacks like rainbow tables


• A salt is a randomly generated string that is stored in plain 
text with the hash


• The salt is appended to the plain text before hashing


• Nearly all hashes in the rainbow table will not use 
this salt


• The salt does not add entropy since it is stored in the clear



• Registration


• User provides username/password


• Generate a random salt


• Append the salt to the password and 
compute a secure hash of this value


• Store the username/salt/hash in your 
database

Authentication



• Authentication


• User provides username/password


• Lookup the salt/hash for the given username


• Append the salt to the provided password and 
compute the SHA256 hash


• If this hash matches the stored hash, the user 
is verified


• If this hash does not match the stored hash, 
the user is not logged in

Authentication



• The bcrypt library implements hashing, 
salting, and other security related 
functions


• Available in many different languages


• It is highly recommended that you use 
this library in your assignment

Authentication



Redirects



Redirects
• To redirect the user to a different page:


• Respond with a 300-level status code


• Ex. Redirect HTTP requests to HTTPS requests 


• Ex. Respond with 301 Moved Permanently when the server is 
updated with new paths, redirect the old paths to the new paths 
instead of maintaining both


• Ex. Response with 302 Found to redirect temporarily (Avoids 
browsers caching the new path)

HTTP/1.1 301 Moved Permanently 
Content-Length: 0 
Location: /new-path



• A redirect response must contain a Location header


• This is the path of the redirect


• The client will make a second HTTP request for the 
Location path and load the page with the new response

HTTP/1.1 301 Moved Permanently 
Content-Length: 0 
Location: /new-path

Redirects



• If the Location is not a full url, it will be treated as a relative 
path


• New request is made with the same protocol/host/port as 
the original request


• Example:


• First request was for "http://cse312.com:8080/old-path"


• Second request is "http://cse312.com:8080/new-path"

HTTP/1.1 301 Moved Permanently 
Content-Length: 0 
Location: /new-path

Redirects



• If the location is a full url, the user can be redirected to a 
different server


• Example:


• First request was for "http://cse312.com:8080/old-path"


• Second request is "https://google.com/"

HTTP/1.1 301 Moved Permanently 
Content-Length: 0 
Location: https://google.com/

Redirects



• Add a Content-Length of 0 since there are no bytes to read 
from the body


• This is technically optional. The lack of a Content-Length 
header should imply a length of 0


• However, this confuses Firefox.. so we'll add the header

HTTP/1.1 301 Moved Permanently 
Content-Length: 0 
Location: /new-path

Redirects


