Authentication Tokens

Authentication Overview

e Registration
e User sends username and password
e \alidate password strength
e Store salted hash of the password

e Authentication
e User sends username/password
 Retrieve the stored salted hash
e Salt and hash the provided password

e |f both salted hashes are identical, the user is
authenticated

Authentication

e \With authentication, we want users to be able to:
e Access their private data

e Make authenticated posts to the server

* \WWhen you take these actions on a web app:
* The app should verify that you made the request
e Only serve your private data to you

e Do not let anyone else make posts in your name

Authentication

* How does the server verify that you are the one
who made a specific request?

* \We only have authentication, so...

e .. Users type their username and password
with every single protected request?..

 Authenticate using the stored [salted hash of
the] password?..

* No! lerrible user experience

e You would not use this site

Authentication

e |nsecure ldea:

e .. Store the username/password in
cookies and send them on every
request?..

e Password is stored client-side In plain
text

* No! Never store passwords In plain text

e Not even client-side! Don't do It.

Authentication Tokens

Instead of authenticating the username/password
on every request:

e |ssue an authentication token

When a user Is authenticated, generate a random
authentication token

Store this token in your database and mark the
username of the account that was authenticated

Set the token as a cookie for that user

Whenever a request comes with that token, treat
them as the user associated with that token

Authentication Tokens

e With authentication tokens:
e We have a login system &

e As long as the user has the authentication token
as their cookie, they are logged In®

e All thelr requests are authenticated by the server

*You can/should set these tokens to expire either client-side
(cookie expiration), server-side (storing an expiration timestamp in
your database and ignoring the token after that timestamp), or both

Authentication Tokens

e Authentication tokens need to be random

e [he token must have enough entropy that they
cannot be guessed

e Eg. An attacker should not be able to send
requests with random tokens until one matches a
logged In user

e (Generally, there should be at least 2280 unique
tokens that could be generated (80 bits of entropy)

e More Is better!

Authentication

Once a token is generated, set it as a
cooKie

Now the token will be sent with all
subsequent requests

Use the token to lookup the user

The possession of the token verifies that
this user did authenticate in the past

Storing Authentication Tokens

e Caution: These tokens need to be stored on the
server

e [hese tokens are as sensitive as passwords!

e Stealing a token and setting a cookie with that
value grants access to an account without even
needing a password

e Solution: Only store hashes of the tokens

e Can salt for extra security/paranoia (Not necessary
since the entropy is so high)

e Salting also makes DB lookups more difficult

Authentication w/ Tokens

e Check each request for a cookie with a token
e | ookup the hash of the token in the database
e |f the token Is found, read the associated username
* Proceed as though this request was made by that user
e |f the token is invalid or no cookie is set
e Do not respect the request and return a 400-level response code:
e 401 Unauthorized - User is not logged in

e 403 Forbidden - User in logged in, but trying to do something that
they are not allowed to do

e Ensure all sensitive pages/features are secured this way!
 The front end cannot be trusted (NEVER trust your users)

e All checks must be performed server-side

Logging Out

 \When a user logs out:
e |nvalidate the token
e [his needs to done server-side

e Remove the token from your database, or mark it as
revoked

e [f you see a logged out token again, do not treat the
request as authenticated

e |[f a token is stolen, this allows the user to regain control
of their account

e Delete the cookie
e Set it with an expiration date in the past
e The browser Is supposed to delete the cookie

Registration and Login

e | et's look at the whole process of creating
an account and logging In

User/Client Server Database

Registration and Login

e User registers a new account

username

XX_UBStudent_XX

password

P@$$w0rd

User/Client Server Database

Registration and Login

e Server generates a random salt

username

XX UBStudent XX

password

P@$$wOrd

salt

hd33fgAwscdmp3MacoQ8uO

User/Client Server Database

Registration and Login

e Append the salt to the password and hash

username

XX _UBStudent XX

password

HHHHHHHHHE =
P@$$w0rd

UL

salt

. hJ33fgAwscdmp3MacoQ8uO

-

H f(P@$SwOrdhJ33fgAwscdmp3MacoQ8uO)

014405205068f66214529fd43093873fdd8b86b84a94bS
User/Client Server |5c7cb91e9e10008ec8 Database

Registration and Login

username

e Discard the plain text password XX_UBStudent_XX
salt

e Store username, salt, and salted hash in DB |;jzstqawscdmpamacoqsuo

password hash

0144c52c5b681662f4529fd43093873fd
d8b86b84a94b85¢c7cb91e9e10008ec8

username

0144c52c5b681662145291fd43093873fd
d8b86b84a94b85c/7cb91e9e10008ec8

XX_UBStudent_XX AR
‘ i salt
HHHHHHiHHE
hd33fgAwscdmp3MacoQ8uO
hash

User/Client Server Database

Registration and Login

username

e \When using bcrypt, salt and xX_UBStudent XX

hash are stored as a single value |ocrypt salt + hash

$2b$12%$91o0K6aMp5snMH2Fv
Z8rcWexyveqs8mFKojG7Jvqg
VhfRxSDmwfAZHW

User/Client Server Database

Registration and Login

username

e User wants to login XX_UBStudent XX

salt

hJ33fgAwscdmp3MacoQ8uO

e Provide username and password

password hash

0144c52c5b681662f4529fd43093873fd
username d8b86b84a94b85¢c7cb91e9e10008ec8

XX_UBStudent_XX
password

P@$$w0rd

User/Client Server Database

Registration and Login

e Server pulls the hash and salt
for this username

User/Client

Server

find({"username”, "XX_UBStudent_XX"})

username
XX _UBStudent XX
salt

hJ33fgAwscdmp3MacoQ8uO

password hash

0144c52c5b681662f4529fd43093873fd
d8b86b84a94b85¢c7cb91e9e10008ec8

username

XX_UBStudent XX

password

P@$$wOrd

username

XX_UBStudent_XX

salt

hJd33fgAwscdmp3MacoQ8uO
hash

0144c52c5b68f662f4529fd43093873fd Database

d8b86b84a94b85c7¢cbhb91e9e10008ec8

Registration and Login

username
e Server now has everything it LR A
needs for authentication me s
password hash
XX_UBStudent_XX e
password
P@3$$wOrd
salt

nJ33fgAwscdmp3MacoQ8uO

nash

0144c52c5b68f66214529fd4309387 3fd
d8b86b84a94b85c7chb91e9e10008ec8

User/Client Server Database

Registration and Login

* Append the salt to the password
provided at login and hash

User/Client

Server

usSername

XX_UBStudent XX

password

P@$$wOrd

salt
hJ33fgAwscdmp3MacoQ8uO
new hash

f(P@$$wOrdhd33fgAwscdmp3MacoQ8uO)

0144c52c5b68f662f4529fd43093873fdd8b8
6b84a94b85¢c7ch91e9e10008ec8

hash

0144c52¢c5b68f662f4529fd43093873fdd8b8
6b84a94b85c7ch91e9e10008ec8

username
XX _UBStudent XX
salt

hJ33fgAwscdmp3MacoQ8uO

password hash

0144c52c5b681662f4529fd43093873fd
d8b86b84a94b85¢c7cb91e9e10008ec8

Database

User/Client

Registration and Login

e |f the two hashes do not match exactly, the user is not

authenticated

 This password is changed to be 1 char off

* The hashes are completely different

Server

username

XX_UBStudent_XX

password

Pa$$wOrd
salt

hJ33fgAwscdmp3MacoQ8uO

new hash

f(Pa$$wOrdnd33fgAwscdmp3MacoQ8uO)

296069c8595a636361af0ce65acfd819178ee
f9ce235¢c554ce1alc37598138f5

hash

0144c52c5b68f662f4529fd43093873fdd8b8
6b84a94b85c7chb91e9e10008ec8

username
XX _UBStudent XX
salt

hJ33fgAwscdmp3MacoQ8uO

password hash

0144c52c5b681662f4529fd43093873fd
d8b86b84a94b85¢c7cb91e9e10008ec8

Database

Registration and Login

e |f the two hashes match, the user is authenticated with this

username

e Server is done with all values related to the password

User/Client

Server

username

XX _UBStudent XX

password

P@$$wOrd
salt

hJ33fgAwscdmp3MacoQ8uO

new hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hash

0144c52c5b68f66214529fd4309387 3fd
d8b86b84a94b85¢c7chb91e9e10008ec8

username
XX _UBStudent XX
salt

hJ33fgAwscdmp3MacoQ8uO

password hash

0144c52c5b681662f4529fd43093873fd
d8b86b84a94b85¢c7cb91e9e10008ec8

Database

Registration and Login

e (Generate an authentication token

e Store a hash of the token in your DB

Kl

User/Client

Server

username

XX _UBStudent XX

username

XX_UBStudent_XX

salt

hd33fgAwscdmp3MacoQ8uO
password hash

0144c52¢c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
99291712497tb1157788f4a6b699e1d7b

authentication token

JIXFFgT1xPhXKcLrOaviQO

update XX_UBStudent_XX's record with

{"hashed authentication token":

"754b1fb1b5ab6787441bfb410a40a/7b99

29f712497tb1157788f4a6b699e1d7b"}

Database

Registration and Login 5=

salt

o Set the plain text of the token to a cookie e e

password hash

i g 0144c52¢c5b68f662f4529fd43093873fd
5 The user IS NoOw IOgged 1N d8b86b84a94b85c7cb91e9e10008ec8

754b1fb1b5ab6787441bfb410a40a7b
99291712497tb1157788f4a6b699e1d7b

hashed authentication token
O‘ Set authentication cookie
Y jixFFgT1xPhXKcLrOaviQO

User/Client Database
Server

Registration and Login 5=

salt
2 hJ33fgAwscdmp3MacoQ8uO
0144c52c5b68f662f4529fd43093873fd
req u eStS d8b86b84a94b85¢c7chb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
99291712497tb1157788f4a6b699e1d7b

Reqguest containing

O‘ authentication cookie
h iXFEGT1xPhXKcLrOaviQO

User/Client Database
Server

Registration and Login 5=

salt

» Read the token from the cookie and hash it Lt it S S

password hash

e |f the cookie does not exist, the user is not 0144c52c5b68f662f4529fd43093873fd
. d8b86b84a94b85c7chb91e9e10008ec8
logged In

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
99291712497tb1157788f4a6b699e1d7b

token to verify

iixFFgT1xPhXKcLrOaviQO

al

hash of token to verify

754b1fb1b5ab6787441bflb410a40a/7b9929
f712497tb1t57788f4a6b699e1d7b

User/Client Server Database

Registration and Login 5=

salt
e Look up the hash in the DB hd33fgAwscdmp3MacoQ8uO
_ find({"hashed authentication token": password hash
* Itarecord is returned, that's the |'754b1fb1b5ab6787441bfb4a10a40a7b9 0144c5205b68f662f4529fd43093873fd
logged In user and the request Is |929f712497fb1f57788f4a6b699e1d7b"}) d8b86b84a94b85¢7chb91e9e10008ec8
authenticated hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
99291712497tb1157788f4a6b699e1d7b

username

XX _UBStudent XX

salt

hJd33fgAwscdmp3MacoQ8uO

Kl

password hash

0144c52¢c5b68166214529fd43093873fd
d8b86b84a94b85c7chb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
Server 9929f712497fb157788f4a6b699e1d7b Database

User/Client

Registration and Login 5=

salt

hd33fgAwscdmp3MacoQ8uO

* \WWe now have the verified username of the |ohes
req U eSte r 0144c52c5b68f662f4529fd43093873fd

d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
99291712497tb1157788f4a6b699e1d7b

username

XX_UBStudent_XX

User/Client Server Database

Registration and Login 5=

salt

hd33fgAwscdmp3MacoQ8uO

* \WWe now have the verified username of the |ohes
req U eSte r 0144c52c5b68f662f4529fd43093873fd

d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
99291712497tb1157788f4a6b699e1d7b

A Response that can contain
\ XX_UBStudent_XX's private data

User/Client Database
Server

Cookie Hijacking

* \We're now using cookies for authentication

e The possession of the token verifies that
this user did authenticate in the past

e \What if someone steals your cookies?

* [hey can authenticate as you without
needing your password!

