
Authentication Tokens

• Registration

• User sends username and password

• Validate password strength

• Store salted hash of the password

• Authentication

• User sends username/password

• Retrieve the stored salted hash

• Salt and hash the provided password

• If both salted hashes are identical, the user is
authenticated

Authentication Overview

• With authentication, we want users to be able to:

• Access their private data

• Make authenticated posts to the server

• When you take these actions on a web app:

• The app should verify that you made the request

• Only serve your private data to you

• Do not let anyone else make posts in your name

Authentication

• How does the server verify that you are the one
who made a specific request?

• We only have authentication, so...

• .. Users type their username and password
with every single protected request?..

• Authenticate using the stored [salted hash of
the] password?..

• No! Terrible user experience

• You would not use this site

Authentication

• Insecure Idea:

• .. Store the username/password in
cookies and send them on every
request?..

• Password is stored client-side in plain
text

• No! Never store passwords in plain text

• Not even client-side! Don't do it.

Authentication

• Instead of authenticating the username/password
on every request:

• Issue an authentication token

• When a user is authenticated, generate a random
authentication token

• Store this token in your database and mark the
username of the account that was authenticated

• Set the token as a cookie for that user

• Whenever a request comes with that token, treat
them as the user associated with that token

Authentication Tokens

• With authentication tokens:

• We have a login system 🎉

• As long as the user has the authentication token
as their cookie, they are logged in*

• All their requests are authenticated by the server

*You can/should set these tokens to expire either client-side
(cookie expiration), server-side (storing an expiration timestamp in
your database and ignoring the token after that timestamp), or both

Authentication Tokens

• Authentication tokens need to be random

• The token must have enough entropy that they
cannot be guessed

• Eg. An attacker should not be able to send
requests with random tokens until one matches a
logged in user

• Generally, there should be at least 2^80 unique
tokens that could be generated (80 bits of entropy)

• More is better!

Authentication Tokens

• Once a token is generated, set it as a
cookie

• Now the token will be sent with all
subsequent requests

• Use the token to lookup the user

• The possession of the token verifies that
this user did authenticate in the past

Authentication

• Caution: These tokens need to be stored on the
server

• These tokens are as sensitive as passwords!

• Stealing a token and setting a cookie with that
value grants access to an account without even
needing a password

• Solution: Only store hashes of the tokens

• Can salt for extra security/paranoia (Not necessary
since the entropy is so high)

• Salting also makes DB lookups more difficult

Storing Authentication Tokens

• Check each request for a cookie with a token

• Lookup the hash of the token in the database

• If the token is found, read the associated username

• Proceed as though this request was made by that user

• If the token is invalid or no cookie is set

• Do not respect the request and return a 400-level response code:

• 401 Unauthorized - User is not logged in

• 403 Forbidden - User in logged in, but trying to do something that
they are not allowed to do

• Ensure all sensitive pages/features are secured this way!

• The front end cannot be trusted (NEVER trust your users)

• All checks must be performed server-side

Authentication w/ Tokens

• When a user logs out:

• Invalidate the token

• This needs to done server-side

• Remove the token from your database, or mark it as

revoked

• If you see a logged out token again, do not treat the

request as authenticated

• If a token is stolen, this allows the user to regain control

of their account

• Delete the cookie

• Set it with an expiration date in the past

• The browser is supposed to delete the cookie

Logging Out

Registration and Login

User/Client Server Database

• Let's look at the whole process of creating
an account and logging in

Registration and Login

User/Client Server Database

• User registers a new account

username

XX_UBStudent_XX

password

P@$$w0rd

Registration and Login

User/Client Server Database

• Server generates a random salt

username

XX_UBStudent_XX

password

P@$$w0rd

salt

hJ33fqAwscJmp3MacoQ8uO

Registration and Login

User/Client Server Database

• Append the salt to the password and hash

username

XX_UBStudent_XX

password

P@$$w0rd

salt

hJ33fqAwscJmp3MacoQ8uO

hash

f(P@$$w0rdhJ33fqAwscJmp3MacoQ8uO)

==

0144c52c5b68f662f4529fd43093873fdd8b86b84a94b8
5c7cb91e9e10008ec8

Registration and Login

User/Client Server Database

• Discard the plain text password

• Store username, salt, and salted hash in DB

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

Registration and Login

User/Client Server Database

• When using bcrypt, salt and
hash are stored as a single value

username

XX_UBStudent_XX

bcrypt salt + hash

$2b$12$9IoK6aMp5snMH2Fv
Z8rcWexyveqs8mFKojG7Jvq
VhfRxSDmwfAZHW

Registration and Login

User/Client Server Database

• User wants to login

• Provide username and password

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8username

XX_UBStudent_XX

password

P@$$w0rd

Registration and Login

User/Client Server Database

• Server pulls the hash and salt
for this username

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

username

XX_UBStudent_XX

password

P@$$w0rd

find({"username", "XX_UBStudent_XX"})

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

Registration and Login

User/Client Server Database

• Server now has everything it
needs for authentication

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

username

XX_UBStudent_XX

password

P@$$w0rd

salt

hJ33fqAwscJmp3MacoQ8uO

hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

Registration and Login

User/Client Server Database

• Append the salt to the password
provided at login and hash

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

username

XX_UBStudent_XX

password

P@$$w0rd

salt

hJ33fqAwscJmp3MacoQ8uO

new hash

f(P@$$w0rdhJ33fqAwscJmp3MacoQ8uO)

==

0144c52c5b68f662f4529fd43093873fdd8b8
6b84a94b85c7cb91e9e10008ec8

hash

0144c52c5b68f662f4529fd43093873fdd8b8
6b84a94b85c7cb91e9e10008ec8

Registration and Login

User/Client Server Database

• If the two hashes do not match exactly, the user is not
authenticated

• This password is changed to be 1 char off

• The hashes are completely different

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

username

XX_UBStudent_XX

password

Pa$$w0rd

salt

hJ33fqAwscJmp3MacoQ8uO

new hash

f(Pa$$w0rdhJ33fqAwscJmp3MacoQ8uO)

==

296069c8595a636361af0c65acfd819178ee1
f9ce235c554ce1a0c37598138f5

hash

0144c52c5b68f662f4529fd43093873fdd8b8
6b84a94b85c7cb91e9e10008ec8

User/Client Server Database

• If the two hashes match, the user is authenticated with this
username

• Server is done with all values related to the password

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

username

XX_UBStudent_XX

password

P@$$w0rd

salt

hJ33fqAwscJmp3MacoQ8uO

new hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

Registration and Login

Registration and Login

User/Client Database

• Generate an authentication token

• Store a hash of the token in your DB
username

XX_UBStudent_XX

authentication token

jixFFgT1xPhXKcLrOavlQO

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
9929f712497fb1f57788f4a6b699e1d7b

Server

update XX_UBStudent_XX's record with

{"hashed authentication token":
"754b1fb1b5ab6787441bfb410a40a7b99
29f712497fb1f57788f4a6b699e1d7b"}

User/Client
Server

Database

• Set the plain text of the token to a cookie

• The user is now logged in

Set authentication cookie

jixFFgT1xPhXKcLrOavlQO

Registration and Login username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
9929f712497fb1f57788f4a6b699e1d7b

User/Client
Server

Database

• Token is sent on all subsequent
requests

Request containing
authentication cookie

jixFFgT1xPhXKcLrOavlQO

Registration and Login username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
9929f712497fb1f57788f4a6b699e1d7b

User/Client Database

• Read the token from the cookie and hash it

• If the cookie does not exist, the user is not
logged in

token to verify

jixFFgT1xPhXKcLrOavlQO

hash of token to verify

754b1fb1b5ab6787441bfb410a40a7b9929
f712497fb1f57788f4a6b699e1d7b

Registration and Login username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
9929f712497fb1f57788f4a6b699e1d7b

Server

User/Client Database

• Look up the hash in the DB

• If a record is returned, that's the
logged in user and the request is
authenticated

Registration and Login username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
9929f712497fb1f57788f4a6b699e1d7b

Server

find({"hashed authentication token":
"754b1fb1b5ab6787441bfb410a40a7b9
929f712497fb1f57788f4a6b699e1d7b"})

username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
9929f712497fb1f57788f4a6b699e1d7b

User/Client Database

• We now have the verified username of the
requester

Registration and Login username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
9929f712497fb1f57788f4a6b699e1d7b

Server

username

XX_UBStudent_XX

User/Client Database

• We now have the verified username of the
requester

Registration and Login username

XX_UBStudent_XX

salt

hJ33fqAwscJmp3MacoQ8uO

password hash

0144c52c5b68f662f4529fd43093873fd
d8b86b84a94b85c7cb91e9e10008ec8

hashed authentication token

754b1fb1b5ab6787441bfb410a40a7b
9929f712497fb1f57788f4a6b699e1d7b

Response that can contain
XX_UBStudent_XX's private data

Server

Cookie Hĳacking
• We're now using cookies for authentication

• The possession of the token verifies that
this user did authenticate in the past

• What if someone steals your cookies?

• They can authenticate as you without

needing your password!

