
API

• We now have a database that stores app data

• Users have to control data

• Manage their profile/setting

• Make posts

• Use a shopping cart

• etc.

• How should users interact with stored data?

Data

• How do users interact with stored data?

Data

User/Client Server Database

• How does our server interact with stored
data?

Data

Server Database

• CRUD is an acronym for the 4 basic
operation used to control data

• Create

• Retrive

• Update

• Delete

CRUD

• Create a new record

• INSERT INTO user (?, ?)

• userCollection.insert_one({"email":"...", "username": "..."})

CRUD - Create

• When a record is created, it should be assigned
a unique id

• This id will be used to identify the created
record

• The id is typically an auto-incrementing integer

• First record had id==1, second has id==2, etc

• MySQL can generate these ids for you

• CREATE TABLE user (id int AUTO_INCREMENT, ...)

CRUD - Create

• MongoDB does not have an auto-increment feature

• You can either:

• Manage your own auto-incrementing ids

• Maintain a collection that remembers the last used id

• Increment the id each time a record is created

• Or generate your ids any other way you'd like

• Make sure the id's are unique

• Id's must be UTF-8 compatible if they will be used in a url

CRUD - Create

• Retrieve all records

• SELECT * FROM user

• userCollection.find({})

• Retrieving all records is often called List

• Technically, the acronym is CRUDL when
list operations are allowed

CRUD - Retrieve/List

• Retrieve a single existing record

• SELECT * FROM user WHERE id=3

• userCollection.find_one({"id":3})

CRUD - Retrieve

• Update an existing record

• UPDATE user SET email=?, username=?
WHERE id=5

• userCollection.update_one({"id":5}, {"$set":
{"email":"...", "username":"..."}})

CRUD - Update

• Can update all fields except the id

• The id technically can change, but you
should never change it

• It is a unique identifier

CRUD - Update

• Delete an existing record

• DELETE FROM user WHERE id=2

• userCollection.delete_one({"id":2})

CRUD - Delete

• In practice, common to "soft delete"

• Don't actually delete the data

• Instead, mark it as deleted

• Do not allow retrieve/update operations on data
marked as deleted

• Soft deletion allows sys admins to perform additional
operations

• eg. User requests to undo an accidental delete

• Preserves history (Helpful for debugging)

• For your HW, it’s fine to “hard delete"

CRUD - Delete

• How do users interact with our server?

Data

User/Client Server

• GET

• Request data from the server (Retrieve)

• POST

• Send data to the server (Create)

• PATCH

• Update a resource (Update)

• PUT

• Replace an existing record (Update)

• DELETE

• Delete a resource (Delete)

HTTP Requests

• Both POST, PATCH, and PUT are all used to send data to the server,
but with different expectations

• POST

• Requires the server to process the data

• eg. Generating the id for a created record

• PATCH

• Make a partial update to an existing record

• eg. Update only the content of a chat message, but not the author

• PUT

• Replace an entire existing record

• Must be idempotent

HTTP - POST v. PATCH v. PUT

• When multiple identical HTTP requests are
sent

• If the requests are idempotent, they will
have the same effect on the server as
sending a single request

• The additional requests will not change the
data of the API

• In math terms, if our request is a function f

• f(f(x)) == f(x)

HTTP - Idempotent

• GET and DELETE are idempotent

• GET should not change the data/state of
the API

• Only retrieve data

• Deleting a record twice has the same effect
on the API as deleting the record once

HTTP - Idempotent

• PUT must be idempotent

• PUT will replace the entire record with the
data of the request

• A second identical PUT doesn't change
anything since the record was already
replaced

HTTP - Idempotent

• POST is not idempotent

• Since the server is processing the data,
there is no implied idempotent property

• eg. Sending 2 identical POST requests to
create a record will result in 2 records
being created with different ids

HTTP - Idempotent

• PATCH is not idempotent

• In practice, PATCH endpoints are usually
idempotent

• There is no expectation that they must be
idempotent

• Eg. A record that tracks a counter or how many
times it’s been updated

HTTP - Idempotent

• REST -> REpresentational State Transfer

• We'll use HTTP requests to interact with
API data

• REST is designed to simplify the way data
is used

• Improve reliability and scalability

RESTful API

• User sends HTTP requests that correlate
to CRUD operations on the data

• POST => Create

• GET => Retrieve

• PUT => Update

• DELETE => Delete

REST and CRUD

• REST is fairly loosely defined (No RFC)

• Or loosely understood

• Typically measured on a spectrum

• An API can be more/less RESTful

• "We could do that, but it's not very RESTful"

• "Let's refactor our API to make it more RESTful"

RESTful API

• Client-Server architecture and
statelessness

• Both constraints are implicit when using
HTTP

• The use of cookies in a RESTful API would
be a violation of statelessness

• Usually accepted in practice (API tokens)

REST Constraints

• Cacheablility

• Each response must contain caching
information

• Requests should be cached if possible

• Avoid stale data from being cached

REST Constraints

• Layered-System

• The API should have the ability to add
additional layers between it and the client

• Ex: Client interacts with a load balancer that
delegates to many instances of your API

• Ex: A reverse proxy server is added that
encrypts all traffic (HTTPS)

• Ex: The client uses a VPN

REST Constraints

• Uniform Interface

• Resources are defined in the requests

• The user is given, in a response, enough
information to update/delete the resource

• A request contains all information needed
to handle that request

• The API should be self-contained (No
reliance on documentation that cannot be
accessed from an API path)

REST Constraints

• Users interact with our RESTful API

• API requests correlate to CRUD operations

Data

RESTful API CRUD

User/Client Server Database

