
HTML Injection
Attacks

HTML Injection
•When hosting static pages

• You control all the content

• Limited opportunity for attackers

•When hosting user-submitted content

• You lose that control

•Must protect against attacks

•Never trust your users!!

Never Trust Your Users!

Never Trust Your Users!
Seriously. NEVER.

Never Trust Your Users
• You may want to think your users will all act

in good faith

• For most users, this may be true

Never Trust Your Users
• You may want to think your users will all act

in good faith

• For most users, this may be true

• Besides your intended users, who else can
access your app?

Never Trust Your Users
• You may want to think your users will all act

in good faith

• For most users, this may be true

• Besides your intended users, who else can
access your app?

• EVERYONE!

Never Trust Your Users

• Do you trust literally everyone??

HTML Injection
• You are now handling user data and sending it

to other users (Through chat messages)

• You're building a form that accepts user data
and serves it to all other users

• What happens when a user enters this in chat:

• "<script>maliciousFunction()</script>"

• "<script>maliciousFunction()</script>"

• This attack is called an HTML injection attack

• This string is uploaded to your server

• Your server stores this string

• Your server sends this string to all users who use your app

• Their browsers render the injected HTML

• Their browsers run the injected JS

HTML Injection

• Lucky for us, Preventing this attack is very simple

HTML Injection

• To prevent this attack:

• Escape HTML when handling user submitted data

• Escape HTML

• Replace &, <, and > with their HTML escaped
characters

• '&' -> &

• '<' -> <

• '>' -> >

HTML Injection

• The escaped characters & < > will be
rendered as characters by the browser

• Browser does not treat these as HTML

HTML Injection

• Replace &, <, and > with their HTML escaped
characters

• <script>maliciousFunction()</script>

• becomes

• <script>maliciousFunction()</script>

• and is rendered as a string instead of
interpreted as HTML

HTML Injection

• Replace &, <, and > with their HTML escaped
characters

• Order is important!

• Always escape & first

• If & is escaped last you'll get:

• &lt;script&gt;maliciousFunction()&lt;
/script&gt;

• Which will not render the way you intended

HTML Injection

Demos

