
XSRF
Cross-Site Request Forgery

XSRF
• Cross-Site Request Forgery

• A request that is sent from a different "origin"

• Origin:

• The combination of protocol, host, and port

• If all three do not match, it is a cross-site request

• What's the danger?

XSRF - Example
Potential outcomes:

• An attack page can make a request to AutoLab

• Requests your grades

• Makes a submission on your behalf

• Attack page makes a request to your bank and transfers
your funds to the attacker's account

• Attack page makes embarrassing posts on social media

XSRF
• We have a form that sends authenticated POST requests to our

server

• You host this app at mycoolproject.com

• The format of these POST requests is known (Anyone can visit and
view your front end)

• An attacker makes their own web app

• The app will send a POST request to mycoolproject.com in the
proper format

• They host this app at freebitcoin.com and get someone to goto
their site

• The site sends the POST request on behalf of the user -> Hacked!

XSRF

• Client Creates an account on your app

• Client logs in and you issue an auth token
in a cookie

• They enjoy your site very much and trust
you with private information

User/Client

mycoolproject.com

freebitcoin.com

XSRF

• Client gets an email

• ALL YOUR DREAMS WILL COME
TRUE!! JUST CLICK HERE!!!

• Naive client clicks the link and gets the
attackers HTML/CSS/Javascript

User/Client

mycoolproject.com

freebitcoin.com

http://freebitcoin.com

XSRF

• The attack site sends a cross-site request to
your app

• The origin is freebitcoin.com

• The request is sent to mycoolproject.com

• The attacker controls this request

• Client may not even know it was sent until
it's too lateUser/Client

mycoolproject.com

freebitcoin.com

XSRF

• Since the request did come from your user

• It may contain auth cookies

• It may look real to your server

• Your server will process it as a
legitimate, authenticated, request if you
don't have protections in place

User/Client

mycoolproject.com

freebitcoin.com

XSRF
• How to send a XSRF attack?

• As the src of an image

• Can send a GET request

• If your server uses query strings, these can be set by
the attacker

• Easy to setup. Embed an image in an email

• Client only has to open the email (Doesn't even require
them to click a shady link)

• This is why images are often blocked in email

XSRF
• How to send a XSRF attack?

• Submit an HTML form

• Get the user to navigate to your page

• The page automatically submits and HTML form on their behalf
(They don't have to click a button. Send it with JS)

• The user will be navigated to the site that was attacked

• Can send GET and POST requests

• Must follow specific encodings supported by HTML forms

• Attacker cannot see the response of the request (No stealing
private data with this method)

XSRF
• How to send a XSRF attack?

• Make an AJAX request

• Get the user to navigate to your page

• Page automatically sends an AJAX request, or several, onload

• Attacker has full control

• They can read the responses and have multiple interactions
with the attacked site

• They can use any HTTP method

• They can put anything in the body of the requests

How do we protect against XSRF attacks?

Referrer?
• Every request should have a referrer header

•Specifies the origin of the request

• If the referrer doesn't match your app

•Deny the request

•Simple enough

•Unfortunately, the referrer can be spoofed and must
not be relied upon for security reasons

SOP
•Same-Origin Policy (SOP)

• The SOP is implemented in modern browsers
and blocks many cross-origin requests by
default

•All AJAX responses are blocked by the SOP

• This is a relief since AJAX is so powerful

•However, the request may still be sent
depending on its MIME type

SOP
• The SOP does NOT block "safe" requests

•Safe requests include

•Any GET request

•Any request that navigates away from the origin (Including
HTML Form submissions using POST)

•A GET request should be idempotent AND not change the state
of the server

•Your GET requests should only retrieve data since they are
not protected by CORS

SOP
• The SOP does NOT block "safe" requests

•HTML form submissions are more difficult
to protect against since they can make
POST requests

•We need better protections

Recall SameSite - Cookie
Directive

• SameSite

• Determines when the cookie will be sent on 3rd party requests

• Lax - Cookie only sent when navigating to your page (Includes HTML form
submissions)

• Or "safe" requests including all GET requests

• The default setting if SameSite is not set

• Strict - The cookie is only sent on 1st party requests

• ie. The cookie is only sent to your server

• None - The cookie is always sent. Requires the secure directive to also be set

• Set-Cookie: id=X6kAwpgW29M; SameSite=Lax

• Set-Cookie: id=X6kAwpgW29M; SameSite=Strict

• Set-Cookie: id=X6kAwpgW29M; SameSite=None; Secure

SOP Limitations
•Since the SOP is enforced by the browser, we have limited

control over its enforcement

•What if a user has a very outdated browser that doesn't
implement the SOP?

•What if the user installed a plug-in that disables the SOP?

•What if the user is using an obscure browser that does not
implement the SOP properly?

• The SOP will protect most users, but not 100%

•And won't protect any users from a GET or HTML form
attack

XSRF - Tokens
• Let's add server-side protection from

XSRF attacks

•Will work for all users and all XSRF
attacks

XSRF - Tokens
• On the Server:

• Generate a long random XSRF token on page load (Attacker must
not be able to guess the token)

• Embed this XSRF token in the page

• Store this XSRF token as being sent to this user

• In the browser:

• XSRF token can be a hidden input on the form

• Send this XSRF token along with form submissions

XSRF - Tokens
• Back to the Server on HTTP requests:

• Read the XSRF token value and the auth token from the request

• Authenticate the user based on their auth token

• Verify that this XSRF token was sent to this user

• If the XSRF token was issues to this user

• Accept the request as valid

• If the XSRF token was NOT issued to this user

• This is an invalid request and might be a XSRF attack

XSRF Token
• Add a new input to your form for the token

• Generate and inject the token as a value using HTML
templates

• Add the hidden attribute so the token is not displayed to
the user

• Read the token from the request and verify

<form action="/image-upload" id="image-form" method="post" enctype="multipart/form-data">
 <input value="AQAAAjppCA8mhugn2UvwOTaKnVY" name="xsrf_token" hidden>
 <label for="form-file">Image: </label>
 <input id="form-file" type="file" name="upload">

 <label for="image-form-name">Caption: </label>
 <input id="image-form-name" type="text" name="name">
 <input type="submit" value="Submit">
</form>

XSRF

• Now, when freebitcoin.com send their request
it cannot contain your XSRF token

• Your server will reject the request

• Attacker can get their own token linked to their
account

• Since they can get a valid token for the
users account, they cannot send a valid
cross-site requestUser/Client

mycoolproject.com

freebitcoin.com

CORS
• The SOP can be too restrictive is some cases

• eg. You host an API that is consumed by
other apps via AJAX

•Cross-Origin Resource Sharing

•A policy that lets you relax the SOP

•Can explicitly allow cross-origin requests
with the header:

Access-Control-Allow-Origin: *

CORS
• The * is a wildcard that allows all cross-site

requests

• It is very dangerous and exposes you to XSRF
attacks

•Can specify specific origins as well

•Common if you have an app with multiple
servers

Access-Control-Allow-Origin: cse312.com

http://cse312.com

CORS
•CORS determines which cross-origin

requests are allowed and which are
blocked

•By default, browsers will block many
cross-origin requests

Access-Control-Allow-Origin: *

