OAuth 2.0 - Overview

Web API

e Many apps have APIs that can be used to interact with user data
programmatically

e Such apps will [typically] allow users to access their data in 2 ways:

 Using the app itself - loading the page and interacting with the Ul (User
Interface)

 Connecting to the API - Sending HT TP requests directly to the server
without using the front end

e Using the API allows us to write custom programs that interact with the app

e eg. A program that starts/stops Spotify playback when lecture ends/starts

Web API

e \Web APIs use endpoints

e API Endpoint: A combination of path and HT TP method that has specific
behavior

e Examples:
e POST /chat-message - Adds a message to chat

e DELETE /chat-message/<mesageld> - delete the chat message with an id
matching <messageld>

e PUT api.spotify.com/vi/me/player/play - begin music playback

e POST api.github.com/repos/<owner>/<repo>/issues - create an issue in the
repo <owner>/<repo>

e GET api.github.com/repos/<owner>/<repo>/issues - get all issues in the repo
<owner>/<repo>

Web API

e How do we securely consume an API?

e The API server can verity with an existing authentication token
e [These tokens were not designed for API access

e (Gives full access to the account without restriction

e More commonly, the API will issue an APl key to the user
e Send this key with each API access
e Server verifies the user associated with the key for authorization

e Keys can have restricted functionality and are only used for API
access (Not as detrimental if compromised)

User

Web API

register/login

auth token

Request APl key
-Auth token

API key
_

APl endpoint
-AP| key

200 OK

-Private data
—

Server

OAuth?

e [his setup works well enough

e SO where does OAuth come Iin?

The Problem

e A user enjoys an app (eg. GitHub) that has a web API

e You want to write a app that consumes the GitHub API for your
users

e Examples:

e You're building a scrum board app that creates/updates
GitHub issues for your users

e You want users to access their private repos through your app

e You want a "sign up with GitHub" button on your app

0 Sign up with GitHub

The Problem

In general, you want to write an app that uses a 3rd
party APl to create/access/modify your users private
data

How do we do this securely?

A BAD Attempt

Never do this!!
..Have your users give you their GitHub username and password

Effective, but very insecure

Never ask users for their password outside of registration/login on
your own app.

e We did a lot of work hashing/salting to make sure we can't know
passwords

This would require us to store plaintext passwords so we can reuse
them each time a user wants to access the API through our app

Another BAD Attempt

Never do this!!
..Have the user give you their API key

Not nearly as bad as storing their password

Lack of accountabillity

e API| accessing made by our app will look like they come from the user
e Rouge apps can abuse your key without detection

API key rate limiting will count against the user when we use the key

e User gets denied access if your app overuses the key

* Bigger problem if the API charges $ per access

Simple Overview [BAD Attempt]:
e Qur app asks the user for their APl key

1. Request API key 3rd Partv API /
rd Party

Auth Server /
Resource Server

Your App / Client

User / Resource Owner

Your App / Client

Simple Overview [BAD Attempt]:

e Qur app asks the user for their APl key

e User visits the APl and obtains an API key for their account

1. Request APl key

User / Resource Owner

2. Request API key

3. API key
—

3rd Party API /
Auth Server /
Resource Server

Your App / Client

Simple Overview [BAD Attempt]:
e Qur app asks the user for their APl key

e User visits the APl and obtains an API key for their account

 User hands their key over to us

1. Request APl key

4. APl key
—

User / Resource Owner

2. Request API key

3. API key
—

3rd Party API /
Auth Server /
Resource Server

Simple Overview [BAD Attempt]:

e Qur app asks the user for their APl key

e User visits the APl and obtains an API key for their account
 User hands their key over to us

e We use this key to access the API for them (Or login using this service)

5. APl access

6. Private data

1. Request API key 2. Request API key

3rd Party API /
Auth Server /
3. AP| key Resource Server

_

Your App / Client 4. API key

—

User / Resource Owner

Security issue - Lack of accountability of the client

e The API has no idea that the user allowed your app to use this
key

e [he app using the key looks the same as the user using the
key

5. APl access

6. Private data

1. Request API key 2. Request API key
3rd Party API /

Auth Server /
4. AP| key . 3. API| key Resource Server

Your App / Client

User / Resource Owner

Your App / Client

Security issue - No compromise detection

e Your server Is responsible for handling the API key

e |f the key Is compromised, attackers requests look

like they come from the user

5. APl access

6. Private data

1. Request APl key

4. AP key

—

User / Resource Owner

2. Request APl key

3. API key
—

3rd Party API /
Auth Server /
Resource Server

Security issue - Never trust your users
e [he user has to handle their own APl key
e Key can be compromised at this point

e Never trust your users. Not even with their own security

5. APl access

6. Private data

1. Request API key 2. Request API key

3rd Party API /
Auth Server /
3. AP| key Resource Server

Your App / Client 4. API key

User / Resource Owner

OAuth 2.0

OAuth 2.0 (Open Authorization 2.0)

 The current, most widely used, solution to this problem

Designed specifically to allow apps to use 3rd party APls for
their users in a secure way

User still has to trust the app with their data

 They are explicitly giving the app permission to access their
private data so this should be assumed

The handling of this access is secure

e Protected from outside attackers

OAuth 2.0

OAuth 2.0 will fix the security issues with one
simple fix

e The API issues API keys (Called access
tokens) to your app directly

e QOur app is accountable for the use, and
secure handling, of the access token

e User never handles their access token (No
need to trust them)

OAuth 2.0

e There are several ways to use OAuth 2.0 called flows

e We'll use the authorization code flow
e The proper flow for our use case of a private server

e \\Ne can store a secret on our server that the user can never access

e |f, for example, we build a stand-alone app with no server:
e The app must be self-contained (There is no back end)

e User has access to every part of the app, including any secret
iInformation

e Use the implicit grant flow (This is not allowed on the HW)

OAuth 2.0 - Client Registration

e Before starting the authorization process with your users, you
must register your app with the 3rd party API

 During the registration process, there are 3 key pieces of
data:

e Client ID: A unique id generated by the AP| and assigned to
your app. This is public information

e Client Secret: A high-entropy random value generated by
the API. This is effectively a password that will be used to
authenticate your app. [If this value cannot be kept secret,
use a flow that doesn't involve a secret]

* Redirect URI: Provided by you. This is where the API will
send your user after they grant you access to the API

e \We'll update our picture with the full
OAuth authentication code flow

5. Authorization Grant

6. Access Token

/. APl Access

8. Private Data

1. Authorization Request 2. Authorization Request

3. Authorization Grant

—

4. Authorization Grant

—

Your App / Client 3rd Party API /

Auth Server /
Resource Server

User / Resource Owner

Your App / Client

e | et's break this down

1. Authorization Request

5. Authorization Grant

6. Access Token

/. APl Access

8. Private Data

4. Authorization Grant

—

2. Authorization Request

3. Authorization Grant

—

User / Resource Owner

3rd Party API /
Auth Server /
Resource Server

 1: Your app asks the user to obtain an authorization
grant allowing the app to use the API on their behalf

1. Authorization Request

Your App / Client 3rd Party API /

Auth Server /
Resource Server

User / Resource Owner

. e 2. The user sends the request to
@ Spotify the authentication server

* [he user is authenticated by the
API (username/password or auth
token)

Music Timer

You agree that Music Timer will be able to:

View your Spotify account data

Your name and username, your profile picture, how many ® User IS aSked |f they Want tO a”OW

followers you have on Spotify and your public playlists
dCCEeSS

View your activity on Spotify

Content you have recently played O CO ntal ns a I |St Of SCO pes

The content you are playing
The content you are playing and Spotify Connect devices

information requested by our app

Take actions in Spotify on your behalf

Control Spotify on your devices
Create, edit, and follow playlists

2. Authorization Request

You can remove this access at any time at spotify.com/account.

For more information about how Music Timer can use your personal
data, please see Music Timer's privacy policy.

Logged in as Emily.
Not you?

CANCEL User / Resource Owner

3rd Party API /
Auth Server /
Resource Server

e 3: |f the user Is authenticated and accepts, an
authorization grant is sent to the user

e [he grant contains an authorization code

1. Authorization Request 2. Authorization Request

3. Authorization Grant

_

Your App / Client 3rd Party API /

Auth Server /
Resource Server

User / Resource Owner

e 4: Your app receives a request from the user at the
redirect URI containing the authorization grant

e Your app now has permission from the user to
access the API

1. Authorization Request 2. Authorization Request

3. Authorization Grant

_

4. Authorization Grant

_

Your App / Client 3rd Party API /

Auth Server /
Resource Server

User / Resource Owner

e 5: Your app will connect to the auth server and "cash in" the
grant for an access token

e This step prevents the user from ever handling their access token

5. Authorization Grant

1. Authorization Request 2. Authorization Request

3. Authorization Grant

_

4. Authorization Grant

_

Your App / Client 3rd Party API /

Auth Server /
Resource Server

User / Resource Owner

e 6. The auth server will verity the identity of the client
using a client secret and will send the access token
directly to your app

5. Authorization Grant

6. Access Token

1. Authorization Request 2. Authorization Request

3. Authorization Grant

—

4. Authorization Grant

—

Your App / Client 3rd Party API /

Auth Server /
Resource Server

User / Resource Owner

Your App / Client

e 7/8: Your app can now use the access token to access the API for your user

* |f the user clicked "login with 3rd party®, verify their identity through the API

 Create an account for them based on this identity

1. Authorization Request

5. Authorization Grant

6. Access Token

/. APl Access

8. Private Data

4. Authorization Grant

—

2. Authorization Request

3. Authorization Grant

—

User / Resource Owner

3rd Party API /
Auth Server /
Resource Server

Your App / Client

OAuth 2.0 - Authorization Code Flow

5. Authorization Grant

6. Access Token

/. APl Access

8. Private Data

1. Authorization Request 2. Authorization Request

4. Authorization Grant 3. Authorization Grant

— —

User / Resource Owner

3rd Party API /
Auth Server /
Resource Server

