
OAuth 2.0 - Overview

Web API
• Many apps have APIs that can be used to interact with user data

programmatically

• Such apps will [typically] allow users to access their data in 2 ways:

• Using the app itself - loading the page and interacting with the UI (User
Interface)

• Connecting to the API - Sending HTTP requests directly to the server
without using the front end

• Using the API allows us to write custom programs that interact with the app

• eg. A program that starts/stops Spotify playback when lecture ends/starts

Web API
• Web APIs use endpoints

• API Endpoint: A combination of path and HTTP method that has specific
behavior

• Examples:

• POST /chat-message - Adds a message to chat

• DELETE /chat-message/<mesageId> - delete the chat message with an id
matching <messageId>

• PUT api.spotify.com/v1/me/player/play - begin music playback

• POST api.github.com/repos/<owner>/<repo>/issues - create an issue in the
repo <owner>/<repo>

• GET api.github.com/repos/<owner>/<repo>/issues - get all issues in the repo
<owner>/<repo>

Web API
• How do we securely consume an API?

• The API server can verify with an existing authentication token

• These tokens were not designed for API access

• Gives full access to the account without restriction

• More commonly, the API will issue an API key to the user

• Send this key with each API access

• Server verifies the user associated with the key for authorization

• Keys can have restricted functionality and are only used for API
access (Not as detrimental if compromised)

User

Server

Web API
register/login

auth token

Request API key

-Auth token

API key

API endpoint

-API key

200 OK

-Private data

OAuth?

• This setup works well enough

• So where does OAuth come in?

The Problem
• A user enjoys an app (eg. GitHub) that has a web API

• You want to write a app that consumes the GitHub API for your
users

• Examples:

• You're building a scrum board app that creates/updates
GitHub issues for your users

• You want users to access their private repos through your app

• You want a "sign up with GitHub" button on your app

The Problem

In general, you want to write an app that uses a 3rd
party API to create/access/modify your users private

data

How do we do this securely?

A BAD Attempt
• Never do this!!

• ..Have your users give you their GitHub username and password

• Effective, but very insecure

• Never ask users for their password outside of registration/login on
your own app.

• We did a lot of work hashing/salting to make sure we can't know
passwords

• This would require us to store plaintext passwords so we can reuse
them each time a user wants to access the API through our app

Another BAD Attempt
• Never do this!!

• ..Have the user give you their API key

• Not nearly as bad as storing their password

• Lack of accountability

• API accessing made by our app will look like they come from the user

• Rouge apps can abuse your key without detection

• API key rate limiting will count against the user when we use the key

• User gets denied access if your app overuses the key

• Bigger problem if the API charges $ per access

User / Resource Owner

Simple Overview [BAD Attempt]:

• Our app asks the user for their API key

3rd Party API /
Auth Server /

Resource Server

1. Request API key

Your App / Client

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

Simple Overview [BAD Attempt]:

• Our app asks the user for their API key

• User visits the API and obtains an API key for their account

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

Simple Overview [BAD Attempt]:

• Our app asks the user for their API key

• User visits the API and obtains an API key for their account

• User hands their key over to us

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

5. API access

6. Private data

Simple Overview [BAD Attempt]:

• Our app asks the user for their API key

• User visits the API and obtains an API key for their account

• User hands their key over to us

• We use this key to access the API for them (Or login using this service)

User / Resource Owner

Security issue - Lack of accountability of the client

• The API has no idea that the user allowed your app to use this
key

• The app using the key looks the same as the user using the
key

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

5. API access

6. Private data

User / Resource Owner

Security issue - No compromise detection

• Your server is responsible for handling the API key

• If the key is compromised, attackers requests look
like they come from the user

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

5. API access

6. Private data

User / Resource Owner

Security issue - Never trust your users

• The user has to handle their own API key

• Key can be compromised at this point

• Never trust your users. Not even with their own security

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

5. API access

6. Private data

OAuth 2.0
• OAuth 2.0 (Open Authorization 2.0)

• The current, most widely used, solution to this problem

• Designed specifically to allow apps to use 3rd party APIs for
their users in a secure way

• User still has to trust the app with their data

• They are explicitly giving the app permission to access their
private data so this should be assumed

• The handling of this access is secure

• Protected from outside attackers

OAuth 2.0
OAuth 2.0 will fix the security issues with one
simple fix

• The API issues API keys (Called access
tokens) to your app directly

• Our app is accountable for the use, and
secure handling, of the access token

• User never handles their access token (No
need to trust them)

OAuth 2.0
• There are several ways to use OAuth 2.0 called flows

• We'll use the authorization code flow

• The proper flow for our use case of a private server

• We can store a secret on our server that the user can never access

• If, for example, we build a stand-alone app with no server:

• The app must be self-contained (There is no back end)

• User has access to every part of the app, including any secret
information

• Use the implicit grant flow (This is not allowed on the HW)

OAuth 2.0 - Client Registration
• Before starting the authorization process with your users, you

must register your app with the 3rd party API

• During the registration process, there are 3 key pieces of
data:

• Client ID: A unique id generated by the API and assigned to
your app. This is public information

• Client Secret: A high-entropy random value generated by
the API. This is effectively a password that will be used to
authenticate your app. [If this value cannot be kept secret,
use a flow that doesn't involve a secret]

• Redirect URI: Provided by you. This is where the API will
send your user after they grant you access to the API

User / Resource Owner

• We'll update our picture with the full
OAuth authentication code flow

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

• Let's break this down

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

Your App / Client

• 1: Your app asks the user to obtain an authorization
grant allowing the app to use the API on their behalf

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

2. Authorization Request

• 2. The user sends the request to
the authentication server

• The user is authenticated by the
API (username/password or auth
token)

• User is asked if they want to allow
access

• Contains a list of scopes
requested by our app

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

2. Authorization Request

• 3: If the user is authenticated and accepts, an
authorization grant is sent to the user

• The grant contains an authorization code

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

2. Authorization Request

4. Authorization Grant

• 4: Your app receives a request from the user at the
redirect URI containing the authorization grant

• Your app now has permission from the user to
access the API

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

5. Authorization Grant

2. Authorization Request

4. Authorization Grant

• 5: Your app will connect to the auth server and "cash in" the
grant for an access token

• This step prevents the user from ever handling their access token

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

• 6: The auth server will verify the identity of the client
using a client secret and will send the access token
directly to your app

User / Resource Owner

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

• 7/8: Your app can now use the access token to access the API for your user

• If the user clicked "login with 3rd party", verify their identity through the API

• Create an account for them based on this identity

User / Resource Owner

OAuth 2.0 - Authorization Code Flow

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant

Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

