WebSockets

AJAX Summary

e Retrieve/Send data from the server after the
page loads without a page reload

* To get new data from the server:
* polling
* long-polling
e [f the server has new data to send to the client

 Must wait for a poll request

WebSockets

e Two-way communication between server and
client

e Server can "push” new data to each client
without being prompted by an HI TP request

e Enables real-time [minus network delays]
communication between users

 Without long-polling
e Works by keeping a TCP socket open

WebSocket Overview

e WebSocket protocol:
e Establish a TCP connection

e (Client sends an HTTP request to upgrade to the
WebSocket protocol

e Server responds confirming the upgrade request
e (Client and server keep the TCP connection open

e (Client and server send WebSocket messages/frames
over the TCP connection until one side closes the
connection

WebSocket Handshake

* \WWhen the server receives a WebSocket HTTP request

e Take steps to keep this TCP socket open as a
WebSocket connection

* These steps ensure that both client and server are
speaking the same protocol

e After the handshake, client/server can both send
messages over the socket

WebSocket Handshake

e Client sends an HTTP GET request to the WebSocket path
e Client sets headers

e Connection: Upgrade

e Upgrade: websocket

e Sec-WebSocket-Key: <random_key>

e Server responds with 101 Switching Protocols with
headers

e Connection: Upgrade
e Upgrade: websocket
e Sec-WebSocket-Accept: <accept_response>

WebSocket Handshake

The client generates a random "Sec-WebSocket-Key" for each
new WebSocket connection

The server appends a specific GUID to this key
e "258EAFA5-E914-47DA-95CA-C5ABODC85B11"
Computes the SHA-1 hash
'Sec-WebSocket-Accept” is the baseb4 encoding of the hash
Why??
* Ensure client and server both implement the protocol
* Highly unlikely this value would be returned by accident
 Avoid caching

WebSocket Frames

e Once the connection is established

 [wo-way communication via web socket
HEWES

A frame is a specifically formatted sequence
of bits containing the message to be sent

* Yes, bits! (And you thought bytes were fun!)

 Parse these bits to read the message

WebSocket Frame

1 2 3

opcode |[M| Payload len Extended payload length
EN (16/64)
(if payload len==126/127)
| K|

| Masking-key (continued) Payload Data

L e

Payload Data continued ...

https://tools.ietf.org/html/rfc6455#section-5.2

e We'll see how to parse through this on Wednesday

https://tools.ietf.org/html/rfc6455#section-5.2
https://tools.ietf.org/html/rfc6455#section-5.2

Web Sockets - Browser

e Jo setup a connection from the browser

e Create a new WebSocket object with the host/path
to connect to

e Choose a path and setup your server to accept
WS requests on that path

let socket = new WebSocket('ws://' + window.location.host + '/socket'):
socket.onmessage = renderMessages;

function sendMessage() {
socket.send(JSON.stringify({'username': username, 'message': message}))

}

function renderMessages(message) A{
console. log(message.data);
s

Web Sockets - Browser

e Set onmessage to a function that will be
called whenever a message Is received

* [he argument of the call will contain the
message

let socket = new WebSocket('ws://' + window.location.host + '/socket'):
ocket.onmessage = renderMessages,

function sendMessage() {
socket.send(JSON.stringify({'username': username, 'message': message}))

}

function renderMessages(message) A{
console. log(message.data);
s

Web Sockets - Browser

e (Call the send method to send a message to the
server

e Can give it a String and the WebSocket object will
convert it to a frame

e \We'll parse this frame on the server

let socket = new WebSocket('ws://' + window.location.host + '/socket'):
socket.onmessage = renderMessages;

function sendMessage() {
socket.send(JSON.stringify({'username': username, 'message': message}))

}

function renderMessages(message) A{
console. log(message.data);
s

Examples

Concurrency

