WebSockets

WebSockets

e | ast time we saw how to establish a WebSocket connection

e Joday, we'll parse and send messages over the socket

WebSocket Frame

1 2 3
4 56 7890123456789 012345¢61789 01

Extended payload length
(16/64)
(if payload len==126/127)

| Masking-key (continued) Payload Data

N Uy O U U U

Payload Data continued ...

https://tools.ietf.org/html/rfc6455#section-5.2

https://tools.ietf.org/html/rfc6455#section-5.2
https://tools.ietf.org/html/rfc6455#section-5.2

Protocols Sidenote

e Many of the protocols used in the Internet define the order
and meaning of bits that are sent

e Sender assembles the bits of a message following the
protocol

e Send the bits through the Internet

e Recelver interprets the bits following the same protocol to
extract meaning from the bits

e Protocols enable communication using only 1's and O's

Protocols Sidenote

e TCP/IP protocol headers shown here

e Routers read the IP header following this protocol to know
how to route a packet

e Endpoints follow the TCP protocol to assemble a sequence
of packets and send it to the process using the given port

0 1 2 3
0123456789012 34567890123454617829°¢01
0 1 2 3 t—t—t—t—t—t—t—t—t—t—t—t—t—t—tototot ottt ottt ettt b —F—F—F—+—+
0123456789012 3456789012345461789°01 | Source Port | Destination Port |
T S R Ay R +-+t-t+-+-t+-+-t-t+-t+-t-t-t-t-t-t-t—-t-t—-t—-t—-t—-t-—-t—-t—-t-—-t—-t—-t—-t—-t=-t-—-4+-+
|Version| IHL |Type of Service| Total Length | Sequence Number |
t—t—t—t—t—t—t—tot—t—t—t bttt —t—t—t ettt ettt —F =ttt -t -t —+— t—t—t—t—t—t—t-t-t—t—t—t-t—t—t—t—t-t—t—t—t—t -t -ttt -ttt —t—t-+-+
| Identification |Flags | Fragment Offset | Acknowledgment Number |
R S S S S +—t—t—t—t—t—t—t—t—t—t—t—t—t -ttt -ttt —t -ttt -ttt —t—+-+-+
| Time to Live | Protocol | Header Checksum | Data | |ula|P|R|S|F|
T S S St | offset| Reserved |R|C|S|S|Y|I] Window
| Source Address | | |G|K|H|T|N|N|
S S S S T S S S S S S S S S S S W S U S S U S O
| Destination Address | Checksum | Urgent Pointer |
i S LYY S Sy S t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—tototototot ot ottt ettt —t—F—+—+
| Options | Padding | Options | Padding |
S S S S T S S S S ST S S S S S S W S U S S U e S S S e
| data |
Example Internet Datagram Header t—t—t—t—t—t—t—t—t—t—t -ttt =ttt ettt ettt ottt —F—F—F—F—F—+—+

TCP Header Format

WebSocket Frame

e The WebSocket protocol functions the same way
e (Client and server agree to follow this protocol
e Send bits in this specific order

e We can rely on the client following this protocol

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Network
Stack

e An IP packet
containing a
WebSocket frame
loleERINGRIIE

0 1 2 3
0123456789012345678901234561789° 01
totototott bttt ottt bttt ottt bttt ottt =t b b=t =+ —+
|Version| IHL |Type of Service| Total Length |
L s S M U S S S s S
| Identification |Flags| Fragment Offset |
ttototot—t ettt ot ottt ottt ot ottt bttt ottt ==t b=t =t —+
| Time to Live Protocol | Header Checksum | IF)

tototototet bttt ottt ottt ot ottt bttt bttt =t b=t =+ —+
| Source Address |
S S O e Sty U M S M S S S S
| Destination Address |
totototot—t bttt ottt ottt ot ottt —t bttt ottt ==t b=t =t —+
| Options | Padding |
B e e e e e

Source Port | Destination Port
i T e e e ety S S L e (R (B S S
Sequence Number
s T e e e L it E S S R e e i
Acknowledgment Number
L T e L it E S S R e e e i
Data | |u|a|P|R|S|F|

Offset| Reserved |R|C|S|S|Y|I| Window TCP
|G|K|H|T|N]|N|
i S S S ST S S S S S S S S S
Checksum | Urgent Pointer
RSO ST ST S S S S S S S
Options | Padding

Extended payload length
(16/64)
(if payload len==126/127)

| Masking-key (continued) Payload Data WebSOCket

Fomm e - - - - = === == - - -+

Payload Data continued ...

Parsing Bits

e We will have to read frames at the bit level
e |t's already In a byte array when we recelive it
* We can access any byte and extract the bits we need

 Helpful to recall that bytes are represented as 8-bit integer values
(0-255)

0 1 2 3
0123456789 012345678901234561789°01
L T S L e T T +

|F|R|R|R| opcode|M| Payload len | Extended payload length
|T|s|s|s| (4) | (16/64)
IN|V|V]V]
| [1]2]3]
L T S R L TSNP
Extended payload length continued, if payload len == 127

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Parsing Bits

e Bit Example - To read the opcode:
e get the byte at index O
 Bitwise AND (& in most languages) this byte with a "bit mask"” of 15
e Since 15 ==00001111 as a byte this will 0 out the 4 higher order bits

e We now have an int from 0-15 representing the opcode

0 1 2 3
0123456789012345678901234561789°01
L e e R Rt L i i ——— +

|F|R|R|R| opcode|M| Payload len | Extended payload length
|T|s|s|s| (4) | (16/64)
N |V|V]|V]
| 11]2]3]
L e e et L e i
Extended payload length continued, if payload len == 127

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

WebSocket Frame

e FIN: The finish bit
e 1 - This is the last frame for this message

e O - There will be continuation frames containing more
data for the same message

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

[T|s|s|s| (4) (7) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

WebSocket Frame

e RSV: Reserved bits
e Used to specify any extensions being used

e [You can assume these are always 000 for the HW]

0 1 2 3
0123456789012345678901234561789°01
L e e R Rt L i i ——— +

|F|R|R|R| opcode|M| Payload len | Extended payload length
|T|s|s|s| (4) | (16/64)
N |V|V]|V]
| 11]2]3]
L e e et L e i
Extended payload length continued, if payload len == 127

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

WebSocket Frame

e opcode: Operation code
e Specifies the type of information contained in the payload

e EX: 0001 for text, 0010 for binary, 1000 to close the
connection, 0000 for continuation frame

0 1 2 3
0123456789 01234561789012345¢6789 01
ettt o ot S S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|T|s|s|s| (4) | (16/64)
| (if payload len==126/127)

Extended payload length continued, if payload len == 127

e s o

|Masking-key, if MASK set to 1 |
Fem———— e ————— Fm—— e ————— +

| Masking-key (continued) | Payload Data |

pae e R

Payload Data continued ...

WebSocket Frame

e MASK: Mask bit
e Setto 1if a mask is being used
e Set to 0 if no mask is being used

e This will be 1 when receiving messages from a client

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Frame Length

e [he next bits will represent payload length in bytes
e Similar to Content-Length

e [he length can be represented in 7, 16, or 64 bits

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Frame Length

e |f the length is <126 bytes

e The length is represented in 7 bits, sharing a byte with
the MASK bit

e The next bit after the length is either the mask or payload

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Frame Length

e |f the length is >=126 and <65536 bytes
e The 7 bit length will be exactly 126 (1111110)
e [he next 16 bits represents the payload length

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R
|F|R|R|R| opcode|M| Payload len Extended payload length
|I|s|s|s| (4) (16/64)
IN|V|V]|V]| (if payload len==126/127)
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Frame Length

e |f the length is >=65536 bytes
e The 7 bit length will be exactly 127 (1111111)
e [he next 64 bits represents the payload length
e 18,446,744,073,709,551,615 max length!
e 16 exabytes / 16,000,000 terabytes

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Frame Length

e Jo read the frame length, read the 7 bit length
e |f the value is 126, read the next 16 bits as the length
e |f the value is 127, read the next 64 bits as the length

 Else, the value itself is the length

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Mask and Payload

e After all the length bits:

e |fthe MASK bit == 1, the next 4 bytes (32 bits) is the
mask

e |f the MASK bit == 0, the payload begins

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Mask and Payload

e |f there is a mask, read these 4 bytes

e The mask will be randomly generated by the client for each
message

e You must parse this each time a message Is received

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Mask and Payload

e Each 4 bytes of the payload has been XORed with the mask by the client
e Read the payload 4 bytes at a time and XOR the bytes with the mask

e |f the length is not a multiple of 4, use only the bytes of the mask that are
nheeded

le. Always reading 4 bytes will cause an index out of bounds error

0 1 2 3
0123456789012 34567890123454617289°01
S S S —— S o +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|T|s|s|s| (4) |A| (7) | (16/64)
IN|V|V]|V| El

| 11]2]3] K]

S —— S

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

XOR Example

If 4 bytes of the message are:

e 01001001_01000011_01010101_00100001

And the random mask is:

e 01111011_00100010_01110101_01110011

This part of the payload will be "message XOR mask":
e 00110010_01100001_00100000_01010010

When we receive these bits and XOR it with the mask again
we get the original message bits:

e 01001001_01000011_01010101_00100001

Mask and Payload

e Once the payload is XORed with the mask 4 bytes at time
we get the entire message

e [hen process the message

0 1 2 3
0123456789012345678901234561789°01
L e e R Rt L i i ——— +

|F|R|R|R| opcode|M| Payload len | Extended payload length
|T|s|s|s| (4) | (16/64)
N |V|V]|V]
| 11]2]3]
L e e et L e i
Extended payload length continued, if payload len == 127

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Sending Frames

e [o send a message to a client:
e Use this same format
e Assemble a byte array with the appropriate values

e Append your payload as bytes

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Sending Frames

e Do not use a mask when sending frames to a client

e No caching concerns on server to client frames

0 1 2 3
0123456789012345678901234561789°01
L e e R Rt L i i ——— +

|F|R|R|R| opcode|M| Payload len | Extended payload length
|T|s|s|s| (4) | (16/64)
N |V|V]|V]
| 11]2]3]
L e e et L e i
Extended payload length continued, if payload len == 127

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Sending Frames

e Example: For our purposes in the HW
e RSVs are always O

e opcode is either 0001 (Sending text), 1000 (close
connection), or 0000 (continuation frame)

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

[T|s|s|s| (4) (7) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Sending Frames

e Check the length of your payload to determine how many
bits are needed for the length

e Follow the same format for payload length as the received
messages

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Sending Frames

e MASK bit is O and there are not mask bytes

e After payload length, immediately add the bytes of the
payload

0 1 2 3
0123456789012345678901234561789°01
L e e R Rt L i i ——— +

|F|R|R|R| opcode|M| Payload len | Extended payload length
|T|s|s|s| (4) | (16/64)
N |V|V]|V]
| 11]2]3]
L e e et L e i
Extended payload length continued, if payload len == 127

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

