
WebSockets



WebSockets

• Last time we saw how to establish a WebSocket connection


• Today, we'll parse and send messages over the socket



WebSocket Frame

https://tools.ietf.org/html/rfc6455#section-5.2

https://tools.ietf.org/html/rfc6455#section-5.2
https://tools.ietf.org/html/rfc6455#section-5.2


Protocols Sidenote
• Many of the protocols used in the Internet define the order 

and meaning of bits that are sent


• Sender assembles the bits of a message following the 
protocol


• Send the bits through the Internet


• Receiver interprets the bits following the same protocol to 
extract meaning from the bits


• Protocols enable communication using only 1's and 0's



Protocols Sidenote
• TCP/IP protocol headers shown here


• Routers read the IP header following this protocol to know 
how to route a packet


• Endpoints follow the TCP protocol to assemble a sequence 
of packets and send it to the process using the given port



WebSocket Frame
• The WebSocket protocol functions the same way


• Client and server agree to follow this protocol


• Send bits in this specific order


• We can rely on the client following this protocol



• An IP packet 
containing a 
WebSocket frame 
looks like this

IP

TCP

WebSocket

Network 
Stack



Parsing Bits
• We will have to read frames at the bit level


• It's already in a byte array when we receive it


• We can access any byte and extract the bits we need


• Helpful to recall that bytes are represented as 8-bit integer values 
(0-255)



Parsing Bits
• Bit Example - To read the opcode:


• get the byte at index 0


• Bitwise AND (& in most languages) this byte with a "bit mask" of 15


• Since 15 == 00001111 as a byte this will 0 out the 4 higher order bits


• We now have an int from 0-15 representing the opcode



WebSocket Frame
• FIN: The finish bit


• 1 - This is the last frame for this message


• 0 - There will be continuation frames containing more 
data for the same message



WebSocket Frame
• RSV: Reserved bits


• Used to specify any extensions being used


• [You can assume these are always 000 for the HW]



WebSocket Frame
• opcode: Operation code


• Specifies the type of information contained in the payload


• Ex: 0001 for text, 0010 for binary, 1000 to close the 
connection, 0000 for continuation frame



WebSocket Frame
• MASK: Mask bit


• Set to 1 if a mask is being used


• Set to 0 if no mask is being used


• This will be 1 when receiving messages from a client



Frame Length
• The next bits will represent payload length in bytes


• Similar to Content-Length


• The length can be represented in 7, 16, or 64 bits



Frame Length
• If the length is <126 bytes


• The length is represented in 7 bits, sharing a byte with 
the MASK bit


• The next bit after the length is either the mask or payload



Frame Length
• If the length is >=126 and <65536 bytes


• The 7 bit length will be exactly 126 (1111110)


• The next 16 bits represents the payload length



Frame Length
• If the length is >=65536 bytes


• The 7 bit length will be exactly 127 (1111111)


• The next 64 bits represents the payload length


• 18,446,744,073,709,551,615 max length!


• 16 exabytes / 16,000,000 terabytes



Frame Length
• To read the frame length, read the 7 bit length


• If the value is 126, read the next 16 bits as the length


• If the value is 127, read the next 64 bits as the length


• Else, the value itself is the length



Mask and Payload
• After all the length bits:


• If the MASK bit == 1, the next 4 bytes (32 bits) is the 
mask


• If the MASK bit == 0, the payload begins



Mask and Payload
• If there is a mask, read these 4 bytes


• The mask will be randomly generated by the client for each 
message


• You must parse this each time a message is received



Mask and Payload
• Each 4 bytes of the payload has been XORed with the mask by the client


• Read the payload 4 bytes at a time and XOR the bytes with the mask


• If the length is not a multiple of 4, use only the bytes of the mask that are 
needed


• Ie. Always reading 4 bytes will cause an index out of bounds error



XOR Example
• If 4 bytes of the message are: 


• 01001001_01000011_01010101_00100001


• And the random mask is:


• 01111011_00100010_01110101_01110011


• This part of the payload will be "message XOR mask":


• 00110010_01100001_00100000_01010010


• When we receive these bits and XOR it with the mask again 
we get the original message bits:


• 01001001_01000011_01010101_00100001



Mask and Payload
• Once the payload is XORed with the mask 4 bytes at time 

we get the entire message


• Then process the message



Sending Frames
• To send a message to a client:


• Use this same format


• Assemble a byte array with the appropriate values


• Append your payload as bytes



Sending Frames
• Do not use a mask when sending frames to a client


• No caching concerns on server to client frames



Sending Frames
• Example: For our purposes in the HW


• RSVs are always 0


• opcode is either 0001 (Sending text), 1000 (close 
connection), or 0000 (continuation frame)



Sending Frames
• Check the length of your payload to determine how many 

bits are needed for the length


• Follow the same format for payload length as the received 
messages



Sending Frames
• MASK bit is 0 and there are not mask bytes


• After payload length, immediately add the bytes of the 
payload


