
WebSocket Buffers





Special Cases
• Let's talk about 3 special cases that will come up 

when implementing WebSockets


• Buffering large frames


• Multiple frames per message using the fin bit and 
continuation frames


• Multiple frames being sent back-to-back messages



Buffering Large Frames
• You will sometimes receive WebSocket frames that are large 

enough that they need to be buffered


• Buffering frames is very similar to buffering HTTP requests


• When receiving a WebSocket Frame:


• Read bytes from the socket


• Parse the headers


• Read the payload length from the headers


• Keep reading bytes from the socket until you've read the entire 
frame


• Payload length does not include the header bytes


• Process the request



• You will sometimes receive very large messages from client 
that will be sent in multiple frames (>131,000 bytes in Chrome)


• Fin bit will be 0 until the last frame


• opcode will be 0000 for all but the first frame


• Payload length is only the length of that frame

Continuation Frames



• When you read a frame with a fin bit of 0:


• Keep reading frames until you read a frame with a fin bit 
of 1


• Combine the payload of all frames, then process the 
entire message

Continuation Frames



• Example of one message sent over 3 frames

Continuation Frames

Frame 1 

fin bit: 0 
payload length: 11 

payload: "Never look "

Frame 2 

fin bit: 0 
payload length: 14 

payload: "directly into "

Frame 3 

fin bit: 1 
payload length: 7 

payload: "the sun"

Message: Never look directly into the sun



Back-to-back Frames
• Multiple WebSocket frames can be sent back-to-back 

on the same connection


• Especially when continuation frames are used


• If you read more bytes than you expect, you have read 
the headers of the next frame


• Use the payload length to know how many bytes to 
expect


• If you read < payload length bytes, you should buffer


• If you read > payload length bytes, store the extra 
bytes as the start of the next frame



Back-to-back Frames
• To test for back-to-back frames (Without sending 

messages >131,000 bytes):


• Edit the front end JavaScript to send a message 
multiple times when the user sends a message


• Make sure each message is duplicated the correct 
number of times


• With this modification, every sent message should 
appear in chat 5 times



Back-to-back Frames
Example


• Two frames are sent by the client back-to-back


• The first frame has a payload length of 1500


• 1508 total bytes including headers


• The first frame has a payload length of 2000


• 2008 total bytes including headers


• Both frames have been processed by TCP and are ready to be 
read

Frame 1 

fin bit: 1 
payload length: 1500 

Frame 2 

fin bit: 1 
payload length: 2000 



Back-to-back Frames

Frame 1 

fin bit: 1 
payload length: 1500 

Frame 2 

fin bit: 1 
payload length: 2000 

• There are 3516 bytes ready to be read from the socket


• And you call 


• This will read unto 2048 bytes from the socket


• There are >2048 bytes ready, so you get the first 2048


• You read the entirety of the first frame, and the first 540 
bytes of the second frame



Back-to-back Frames

Frame 1 

fin bit: 1 
payload length: 1500 

Frame 2 

fin bit: 1 
payload length: 2000 

• If you're not careful, you loop will go back to the 
socket and read the remaining 1468 bytes of the 
second frame and attempt to parse it


• Since you start in the middle of the frame, you will run 
header parsing code on masked payload bytes


• You will get errors!



Back-to-back Frames
• When parsing the first frame:


• Use the payload length to detect that you've read 
too many bytes


• Store the extra bytes in a separate variable


• Parse the first frame

Frame 1 

fin bit: 1 
payload length: 1500 

Frame 2 

fin bit: 1 
payload length: 2000 



Back-to-back Frames
• When you finish processing the first frame, start 

parsing the second frame with the bytes stored in the 
operate variable


• Check the payload length and buffer if needed to read 
the rest of the frame


• Recommendation: Use your top-level loop to do this 
so you can handle any number of back-to-back frames

Frame 1 

fin bit: 1 
payload length: 1500 

Frame 2 

fin bit: 1 
payload length: 2000 



Demos


