WebSocket Buffers

1 2 3

S R S U —— S R S ——— g +
|F|R|R|R| opcode|M| Payload len | Extended payload length |
[I|s|s[s| (4) |A] (7) | (16/64) |
IN|V|V|V] S| | (if payload len==126/127) |
| [1]2]3] K| | |
S R S U —— S R S —— + - - - - - - - - - - - - - - - +
| Extended payload length continued, if payload len == 127 |
t = - = - - - - ... === S ———— +
| |Masking-key, if MASK set to 1 |
A ——— T ——— +
| Masking-key (continued) | Payload Data |
e - - = = - - = = = =+
: Payload Data continued ...

= = = - - - - ... s = - +

Special Cases

e | et's talk about 3 special cases that will come up
when implementing WebSockets

e Buffering large frames

e Multiple frames per message using the fin bit and
continuation frames

e Multiple frames being sent back-to-back messages

Buffering Large Frames

e You will sometimes receive WebSocket frames that are large
enough that they need to be buffered

e Buffering frames is very similar to buffering HT TP requests
e WWhen receiving a WebSocket Frame;

e Read bytes from the socket

e Parse the headers

e Read the payload length from the headers

e Keep reading bytes from the socket until you've read the entire
frame

e Payload length does not include the header bytes

e Process the request

Continuation Frames

e You will sometimes receive very large messages from client
that will be sent in multiple frames (>131,000 bytes in Chrome)

Fin bit will be 0 until the last frame

e opcode will be 0000 for all but the first frame
 Payload length is only the length of that frame

0 1 2 3
0123456789012 34567890123454617289°01
S S S —— S o +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|T|s|s|s| (4) |A| (7) | (16/64)
IN|V|V]|V| El

| 11]2]3] K]

S —— S

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Continuation Frames

e When you read a frame with a fin bit of O:

e Keep reading frames until you read a frame with a fin bit
of 1

e Combine the payload of all frames, then process the
entire message

0 1 2 3
0123456789 01234561789012345¢6789 01
S S R R R S +
|F|R|R|R| opcode|M| Payload len | Extended payload length

|I|s|s|s| (4) | (16/64)
N[V |V|V]
| 11]2]3]

| Masking-key (continued) Payload Data

pae e R

Payload Data continued ...

Continuation Frames

e Example of one message sent over 3 frames

Frame 1 Frame 2 Frame 3

fin bit: 0 fin bit: 0 fin bit: 1
payload length: 11 payload length: 14 payload length: 7
payload: "Never look " payload: "directly into " payload: "the sun”

Message: Never look directly into the sun

Back-to-back Frames

e Multiple WebSocket frames can be sent back-to-back
on the same connection

e Especially when continuation frames are used

e |f you read more bytes than you expect, you have read
the headers of the next frame

e Use the payload length to know how many bytes to
expect

e |f you read < payload length bytes, you should buffer

e |f you read > payload length bytes, store the extra
bytes as the start of the next frame

Back-to-back Frames

e o test for back-to-back frames (Without sending

messages >131,000 bytes):

e Edit the front end JavaScript to send a message
multiple times when the user sends a message

e Make sure each message is duplicated the correct
number of times

ket .send(JS

icket.send(

cket.send(JSOA
cket.send(JS
cket.send(JS

.'...stringify({ eSS
.'...stringify({ eSS
.stringify(REICH { ' mess
N.stringify ([REIEH { ' mess
N.stringify ([EEICH {' me:

': messagel}));
': message}));
': message}));
': messagel}));

: message})):

e With this modification, every sent message should

appear in chat 5 times

Back-to-back Frames

Example
e Two frames are sent by the client back-to-back
e The first frame has a payload length of 1500
e 1508 total bytes including headers
e The first frame has a payload length of 2000
e 2008 total bytes including headers

e Both frames have been processed by TCP and are ready to be
read

Frame 1 Frame 2

fin bit: 1 fin bit: 1
payload length: 1500 payload length: 2000

Back-to-back Frames

e There are 3516 bytes ready to be read from the socket
e And you call received data = .request.recv(2048)

e This will read unto 2048 bytes from the socket

e There are >2048 bytes ready, so you get the first 2048

* You read the entirety of the first frame, and the first 540
bytes of the second frame

Frame 1 Frame 2

fin bit: 1 fin bit: 1
payload length: 1500 payload length: 2000

Back-to-back Frames

e |f you're not careful, you loop will go back to the
socket and read the remaining 1468 bytes of the
second frame and attempt to parse it

e Since you start in the middle of the frame, you will run
header parsing code on masked payload bytes

* You will get errors!

Frame 2

fin bit: 1
ad length: 2000

Back-to-back Frames

 When parsing the first frame:

e Use the payload length to detect that you've read
too many bytes

e Store the extra bytes in a separate variable

e Parse the first frame

Frame 1 Frame 2

fin bit: 1
payload length: 1500

fin bit: 1
ad length: 2000

Back-to-back Frames

e \When you finish processing the first frame, start
parsing the second frame with the bytes stored in the

operate variable

e Check the payload length and buffer if needed to read
the rest of the frame

e Recommendation: Use your top-level loop to do this
SO you can handle any number of back-to-back frames

Frame 2

fin bit: 1
ad length: 2000

