WebSocket Buffers
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Special Cases

e | et's talk about 3 special cases that will come up
when implementing WebSockets

e Buffering large frames

e Multiple frames per message using the fin bit and
continuation frames

e Multiple frames being sent back-to-back messages



Buffering Large Frames

e You will sometimes receive WebSocket frames that are large
enough that they need to be buffered

e Buffering frames is very similar to buffering HT TP requests
e WWhen receiving a WebSocket Frame;

e Read bytes from the socket

e Parse the headers

e Read the payload length from the headers

e Keep reading bytes from the socket until you've read the entire
frame

e Payload length does not include the header bytes

e Process the request



Continuation Frames

e You will sometimes receive very large messages from client
that will be sent in multiple frames (>131,000 bytes in Chrome)

Fin bit will be 0 until the last frame

e opcode will be 0000 for all but the first frame
 Payload length is only the length of that frame
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Continuation Frames

e When you read a frame with a fin bit of O:

e Keep reading frames until you read a frame with a fin bit
of 1

e Combine the payload of all frames, then process the
entire message
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Continuation Frames

e Example of one message sent over 3 frames

Frame 1 Frame 2 Frame 3

fin bit: 0 fin bit: 0 fin bit: 1
payload length: 11 payload length: 14 payload length: 7
payload: "Never look " payload: "directly into " payload: "the sun”

Message: Never look directly into the sun



Back-to-back Frames

e Multiple WebSocket frames can be sent back-to-back
on the same connection

e Especially when continuation frames are used

e |f you read more bytes than you expect, you have read
the headers of the next frame

e Use the payload length to know how many bytes to
expect

e |f you read < payload length bytes, you should buffer

e |f you read > payload length bytes, store the extra
bytes as the start of the next frame



Back-to-back Frames

e o test for back-to-back frames (Without sending

messages >131,000 bytes):

e Edit the front end JavaScript to send a message
multiple times when the user sends a message

e Make sure each message is duplicated the correct
number of times
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e With this modification, every sent message should

appear in chat 5 times



Back-to-back Frames

Example
e Two frames are sent by the client back-to-back
e The first frame has a payload length of 1500
e 1508 total bytes including headers
e The first frame has a payload length of 2000
e 2008 total bytes including headers

e Both frames have been processed by TCP and are ready to be
read

Frame 1 Frame 2

fin bit: 1 fin bit: 1
payload length: 1500 payload length: 2000



Back-to-back Frames

e There are 3516 bytes ready to be read from the socket
e And you call received data = .request.recv(2048)

e This will read unto 2048 bytes from the socket

e There are >2048 bytes ready, so you get the first 2048

* You read the entirety of the first frame, and the first 540
bytes of the second frame

Frame 1 Frame 2

fin bit: 1 fin bit: 1
payload length: 1500 payload length: 2000



Back-to-back Frames

e |f you're not careful, you loop will go back to the
socket and read the remaining 1468 bytes of the
second frame and attempt to parse it

e Since you start in the middle of the frame, you will run
header parsing code on masked payload bytes

* You will get errors!

Frame 2

fin bit: 1
ad length: 2000



Back-to-back Frames

 When parsing the first frame:

e Use the payload length to detect that you've read
too many bytes

e Store the extra bytes in a separate variable

e Parse the first frame

Frame 1 Frame 2

fin bit: 1
payload length: 1500

fin bit: 1
ad length: 2000




Back-to-back Frames

e \When you finish processing the first frame, start
parsing the second frame with the bytes stored in the

operate variable

e Check the payload length and buffer if needed to read
the rest of the frame

e Recommendation: Use your top-level loop to do this
SO you can handle any number of back-to-back frames

Frame 2

fin bit: 1
ad length: 2000







