
Media Processing

Media Processing
• You do not always want to store user uploaded

media as-is

• Users can upload anything

• What they upload might break your server

• Never trust your users!

• Even your most trustworthy users will upload large
media files

• High storage cost

• Slower load times

Media Processing
• Process the media when it’s uploaded

• Compress the size of the image/video

• Only store and serve the compressed files

• Limits storage costs

• Maintains fast load times even after large files are
uploaded

• *Typically also limit the file size on the front end

• Can always be bypassed

Aspect Ratios
• It’s important to preserve the original aspect ratio of the media

• In our examples, we’ll have a target maximum number of
pixels for the height or width

• The Process:

• Read the dimensions of the media to find the aspect ratio

• Set the larger dimension equal to your maximum height/
width

• Compute the other dimension based on the aspect ratio

• Scale the media to this new height and width

Image Processing

• Recommended to use the Pillow library in Python

• Pillow has many methods for working with images

• You may use any library you’d like to process images

Video Processing
• Recommended to use ffmpeg

• ffmpeg is the answer for video manipulation

• Need to install ffmpeg

• Include the installation in your Dockerfile

• You may use any library you’d like to process videos

ffmpeg

• Example of command line ffmpeg usage

• Converts inputVideo.avi into an mp4

• The -i flag indicates the input filename

• The -f flag indicates the output format

• The last argument is always the output filename

• No flag for the output filename

ffmpeg -i inputVideo.avi -f mp4 outputVideo.mp4

ffmpeg

• We can add more arguments for more control

• Output filename is still the last argument

• The -s flag is sets the resolution of the output file

• We convert the file to 640x360

ffmpeg -i inputVideo.avi -s 640x360 -f mp4 outputVideo.mp4

ffmpeg
• To run ffmpeg in your code

• Option 1: Make a system call

• Same as typing a command into the command line

• Build into every language

• Option 2: Use ffmpeg bindings for your language

• Simplifies the syntax by calling methods instead of
working with command line arguments

• Makes the system calls for you

Streaming

The Problem
• You host a video on your web app

• You want high quality so you host a large 1080p mp4

• The entire file is 100's of MB

• Every user visiting your page has to download the
entire video before playback can begin

• Very slow to load

• Entire file must download even for users who will
only watch for a few seconds

Chunking
• Avoid the requirement of downloading the entire video before it plays

• Provided a way to request short segments of the video

• Download one "chunk" of the video at a time

• Typically ~2-10 seconds of playback

• Advantages:

• Only a few seconds need to be downloaded before playback starts

• If the user skips around in the video, only request they chunk they
skipped to

• If the user leaves the page without finishing the video, the entire file
doesn't have to be downloaded

HLS vs MPEG-DASH
• Two major protocols support the idea of breaking a video into smaller

segments/chunks: HLS and MPEG-DASH

• HTTP Live Streaming (HLS)

• Developed by Apple

• Only supports the H.264 encoding for video

• Wide-spread adaptation

• Spec freely available in RFC8216

• Dynamic Adaptive Streaming over HTTP (MPEG-DASH)

• Developed by Moving Picture Experts Group (MPEG)

• Supports any video encodings

• No support on Apple devices

• Spec published as ISO/IEC 23009-1:2022 - Available for $245 (!)

HLS
• Divide the video into multiple .ts files

• MPEG Transport Stream files

• One .m3u8 index file containing information
about each .ts file and how they combine into a
single video

• Your server hosts all files

• Set the video source as the index file

• Browser reads the index file to know when to
request each ts file

HLS - Transcoding

• Use ffmpeg to convert to HLS

• "-f hls" to specify the output format as HLS

• "-hls_list_size 0" to keep all ts files in the index

• By deafult, ffmpeg will only keep the last 5 ts files in the
index file

• This is good if you are live-streaming (This is the HTTP
Live Streaming protocol after all)

• Since our use case is hosting Video on Demand (VOD), we
want to keep every ts file in the index

• Setting the list size to 0 means the size is not limited

ffmpeg -i space.mp4 -hls_list_size 0 -f hls space.m3u8

Adaptive Bit-Rate
Streaming

The Problem
• You host a video on your web app

• You even use HLS or MPEG-DASH to segment the video into
2-10 seconds chunks

• You want high quality so you host chunks in 4K@60Hz

• Can require ~25Mb/s bandwidth to stream

• And someone visits your site using eduroam on a bad day..

• The video buffers, stutters, or doesn't play at all

• We need a solution that:

• Allows users with slow connections to enjoy your content

• Delivers high quality to users with high-speed Internet

Adaptive Bit-Rate
• Instead of hosting the a single video at a single resolution

• Host multiple versions of the same video at different
resolutions

• Each resolution requires a different bit rate to stream

• User visits your page

• Their browser adapts to the current download
bandwidth available

• Stream the highest bit rate video that fits the bandwidth

Adaptive Bit-Rate
• Using HLS or MPEG-DASH

• Create chunks at several different resolutions/bit rates

• Add information about all resolutions in the index file

• With the video segmented into ~2-10 second chucks

• Easy for the browser to switch between resolutions

Adaptive Bit-Rate
• The browser can adapt the requested bit-rate based on current conditions

• Limited interruption for the user, though quality can change over time

4k

1080p

480p

potato

wifi slows down wifi speeds up

Adaptive Bit-Rate - HLS
• Using HLS, m3u8 index files can be nested

• Convert your video into multiple HLS resolutions

• Combine them into a single index file with references to the
others

• This example contains references to 2 video index files at
different resolutions, and 1 audio index file

Video Players
• Most built-in video players do not support HLS or MPEG-

DASH

• You cannot rely on the browser having a player for
either of these formats

• We must use a 3rd party video player

• Several players available (eg. dash.js)

• Examples in the following slides will use video.js

Video Players
• This example downloads the css and js for video.js from a CDN

• Uses "class" and "data-setup" attributes on a video element to tell the
library to do its thing

• You now have a video player that supports both HLS and MPEG-DASH

Video Players
• Your video player will now have a consistent look across all

browsers

• Don't have to worry about what formats each browser supports

• You support any format supported by video.js

Live Streaming

Live Streaming
• We've talked about uploading and hosting mp4

videos using a streaming protocol

• A VOD service

• What about live streaming?

• Most live streaming isn't truly live

• There will be several seconds of delay in the stream

• Acceptable loss to gain accuracy

Live Streaming
• Typical setup (eg. Twitch/YouTube Live/etc.)

• User streams their video into an ingest server using the
Real-Time Messaging Protocol (RTMP)

• RTMP is a container for any real-time communication

• The content of RTMP happens to be a media stream in
this case

• The server transcodes the video into a streaming format
(eg. HLS/MPEG-DASH) and continually updates/
generates index files

Live Streaming
• When a viewer visits a live stream

• The browsers asks for the latest index file and starts
requesting content

• When it nears the end of that index file, request a new
index file

• Repeat until the stream ends

• When a viewer visits the VOD of a past live-stream

• Serve an index file for then entire stream

• No different than watching the stream live

Live Streaming
• Since the transcoding process of the ingest server takes

some time:

• The stream is not truly live

• The streamed content is downloaded via TCP/HTTP

• Reliable. You will not miss a second of video

• If the delay is unacceptable (eg. Zoom):

• Use UDP instead of TCP

• Do not transcode

• Accept dropped packets as a part of life

