Video - ABR

The Problem

 You host a video on your web app
 You want high quality so you host a large 1080p mp4
e The entire file is 100's of MB

e Every user visiting your page has to download the
entire video before playback can begin

e Very slow to load

e Entire flle must download even for users who will
only watch for a few seconds

Chunking

Avoid the requirement of downloading the entire video before it plays
Provided a way to request short segments of the video
Download one "chunk" of the video at a time

e [ypically ~2-10 seconds of playback

Advantages:

e Only a few seconds need to be downloaded before playback starts

e |f the user skips around in the video, only request they chunk they
skipped to

e |f the user leaves the page without finishing the video, the entire file
doesn't have to be downloaded

Chunking - Range

Even mp4 videos can be chunked

The browser may end a request for a large file that includes a Range
header

e The Range header specifies a range of bytes being requested

e eg. A request for "/video.mp4" with a header "Range: 10000-20000"
Is request the 9999th through 19999th bytes of video.mp4

The response code should be 206 Partial content
The response should contain a Content-Range header

e Contains the range of bytes being sent and the to total size of the
file

e eg. Content-Range: 10000-20000/500000
e eg. Content-Range: 0-499999/500000 if the entire file is sent

Chunking - Range

e Using the Range header can be effective in some
cases, however:

e |t adds extra complexity to the server
e |t relies on the browser to request useful ranges

e Some browsers might not implement Range and ask
for the entire file

e \We would like a more robust solution

Chunking - Multiple Files

e |[nstead of relying on the browser asking for a specific
range of bytes..

e \We host a single video in multiple files
e Each file contains a few seconds of playback
e The browser requests each segment as needed

e User only watches a few seconds -> Only need to
request the first few segments

e User skips to the middle of the video -> Request the
middle segment

HLS vs MPEG-DASH

e Two major protocols support the idea of breaking a video into smaller
segments/chunks: HLS and MPEG-DASH

e HTTP Live Streaming (HLS)
e Developed by Apple

e Only supports the H.264 encoding for video
e \Wide-spread adaptation
e Spec freely available in RFC8216
e Dynamic Adaptive Streaming over HTTP (MPEG-DASH)
e Developed by Moving Picture Experts Group (MPEG)
e Supports any video encodings

e No support on Apple devices
e Spec published as ISO/IEC 23009-1:2022 - Available for $245 (!)

N N SN N

y)
FRA NN o

NV 0 ~ O O N NN

N NN W N N N N N NN NN R R R R R R R R R
N N P ® 0V 0 3 00 U1 N W N P ®©® Vv 0 9 00 01 N N N B o

#EXTM3U

#EXT-X-VERSION:3

#EXT-X-TARGETDURATION:8
#EXT-X-MEDIA-SEQUENCE:0
#EXTINF:6.

space0.ts

#EXTINF:8.

spacel.ts

#EXTINF:8.

space2.ts

#EXTINF:8.

spaced.ts

#EXTINF:8.

space4.ts

#EXTINF:8.

spaces.ts

#EXTINF:8.

spaceé.ts

#EXTINF:8.

space7.ts

#EXTINF:8.

space8.ts

#EXTINF:8.

space9.ts

#EXTINF:8.

773433,

341667,

341667,

341667,

341667,

341667,

341667,

341667,

341667,

341667,

341667,

spacell.
#EXTINF:
spacell.
H#EXTINF:
spacel?2.
#EXTINF:
spacels.

ts
8.341667,
ts
6.973633,
ts
2.836167,
ts

#EXT-X-ENDLIST

HLS

Divide the video into multiple .ts files
e MPEG Transport Stream files

One .m3u8 index file containing information
about each .ts file and how they combine into a
single video

Your server hosts all files
Set the video source as the index file

Browser reads the index file to know when to
request each ts file

HLS - Transcoding

ffmpeg -1 space.mp4 -hls_list size 0 -f hls space.m3u8

e Use ffmpeg to convert to HLS
e "-f his" to specify the output format as HLS
e "-his_list_size 0" to keep all ts files in the index

e By deafult, ffmpeg will only keep the last 5 ts files in the
index file

 This is good if you are live-streaming (This is the HTTP
Live Streaming protocol after all)

e Since our use case is hosting Video on Demand (VOD), we
want to keep every ts file in the index

e Setting the list size to 0 means the size is not limited

LLPPrPrrerrrerererererrrw

chunk-stream0-00001.m4s
chunk-stream0-00002.m4s
chunk-stream0-00003.m4s
chunk-stream0-00004.m4s
chunk-stream0-00005.m4s
chunk-stream0-00006.m4s
chunk-stream0-00007.m4s
chunk-stream0-00008.m4s
chunk-stream0-00009.m4s
chunk-stream0-00010.m4s
chunk-stream0-00011.m4s
chunk-stream0-00012.m4s
chunk-stream0-00013.m4s
chunk-stream0-00014.m4s
Init-stream0.m4s

space.mpd

VO 00 N O 0o N NN

N N N N N N N N NN R R R R R R RP R R
O 0 9 060 01 N W N P © Vv 0 N9 060 o1 N W N R o

<?xml version="1.0" encoding="utf-8"?>

<MPD xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="urn:mpeg:dash:schema:mpd:2011"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xsi:schemalLocation="urn:mpeg:DASH:schema:MPD:2011 http://:
profiles="urn:mpeg:dash:profile:isoff-1live:2011"

type="static"
mediaPresentationDuration="PT1M48.3S"
maxSegmentDuration="PT5.0S"
minBufferTime="PT13.9S">
<ProgramInformation>
</ProgramInformation>
<ServiceDescription id="0">
</ServiceDescription>
<Period id="0" start="PT0.0S">
<AdaptationSet id="0" contentType="video" startWithSAl
<Representation id="0" mimeType="video/mp4" codec:
<SegmentTemplate timescale="30000" initializa
<SegmentTimeline>
<S t="0" d="203203" />
<S d="250250" r="10" />
<S d="209209" />
<S d="85085" />
</SegmentTimeline>
</SegmentTemplate>
</Representation>
</AdaptationSet>
</Period>
</MPD>

MPEG-DASH

Divide the video into multiple files
that can use a variety of formats
(Mm4s by default in ffmpeg output
which is mp4 encoded)

One .mpd (Media Presentation
Description) index file containing
tons of information in an XML
format

Hosts all files and set the video
source as the index file

Browser reads the index file to find
an init file and naming convention
for content files to request

O 00 N O O N NN

N N RN RN RN N NNNNPR R R R R RB B B B
O 00 3 00 U1 N W N P © v 0 9 00 Ul N W N P o

<?xml version="1.0" encoding="utf-8"?>
<MPD xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns="urn:mpeg:dash:schema:mpd:2011"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xsi:schemalLocation="urn:mpeg:DASH:schema:MPD:2011 http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-DASH
profiles="urn:mpeg:dash:profile:isoff-live:2011"
type="static"
mediaPresentationDuration="PT1M48.3S"
maxSegmentDuration="PT5.0S"
minBufferTime="PT13.9S">
<ProgramInformation>
</ProgramInformation>
<ServiceDescription id="0">
</ServiceDescription>
<Period id="0" start="PT0.0S">
<AdaptationSet id="0" contentType="video" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" fra
<Representation id="0" mimeType="video/mp4" codecs="avcl.640028" bandwidth="2403076" width="1920" height="10
<SegmentTemplate timescale="30000" initialization="init-stream$RepresentationID$.m4s" media="chunk-strea
<SegmentTimeline>
<S t="0" d="203203" />
<S d="250250" r="10" />
<S d="209209" />
<S d="85085" />
</SegmentTimeline>

</SegmentTemplate>

</Representation>
</AdaptationSet>
</Period>

</MPD>

| schema_files/DASH-MPD.xsd"

EeRate=“30000/1001" maxWidth="1920" maxHeight="1080" par="16:9" lang="eng">

0" sar="1:1">
m$RepresentationID$-$Number%05d$.mas" startNumber="1">

MPEG-DASH - Transcoding

ffmpeg -1 space.mp4 -f dash space.mpd

e Use ffmpeg to convert to MPEG-DASH
e "-fdash" to specify the output format as MPEG-DASH
e Creates an mpd with the name you provide

e All other files follow a default naming convention

e May want to create a new directory for each video to
avoid naming conflicts

Adaptive Bit-Rate
Streaming

The Problem

You host a video on your web app

e You even use HLS or MPEG-DASH to segment the video into
2-10 seconds chunks

You want high quality so you host chunks in 4K@Q60Hz
e Can require ~25Mb/s bandwidth to stream
And someone Visits your site using eduroam on a bad day..

 The video buffers, stutters, or doesn't play at all

We need a solution that:
 Allows users with slow connections to enjoy your content

e Delivers high quality to users with high-speed Internet

Adaptive Bit-Rate

* Instead of hosting the a single video at a single resolution

e Host multiple versions of the same video at different
resolutions

e Each resolution requires a different bit rate to stream

e User visits your page

 Their browser adapts to the current download
bandwidth available

e Stream the highest bit rate video that fits the bandwidth

Adaptive Bit-Rate

e Using HLS or MPEG-DASH
e Create chunks at several different resolutions/bit rates

e Add information about all resolutions in the index file

e With the video segmented into ~2-10 second chucks

e Easy for the browser to switch between resolutions

Adaptive Bit-Rate

e The browser can adapt the requested bit-rate based on current conditions

e | imited interruption for the user, though quality can change over time

4k

1080p
480p

potato

wifi slows down wifi speeds up

y | .
é main.m3us8

B mec
B mec
B mec

o ~JJ O O I N N B

Adaptive Bit-Rate - HLS

e Using HLS, m3u8 index files can be nested

e Convert your video into multiple HLS resolutions

ia_0.m3u8 e Combine them into a single index file with references to the
la_1.m3u8 OtherS
la_2.m3u8

e This example contains references to 2 video index files at

different resolutions, and 1 audio index file

#EXTM3U
#EXT-X-VERSION:7
#EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="group_Al1",NAME="audio_1" ,DEFAULT=YES,URI="media_1.m3u8"
#EXT-X-STREAM-INF :BANDWIDTH=131049,RESOLUTION=540x960,CODECS="avcl.64001f, 6 mp4a.40.2",AUDIO="group_A1"
media_0.m3u8
#EXT-X-STREAM-INF :BANDWIDTH=1131049,RESOLUTION=322x572,CODECS="avcl.64001e,mp4a.40.2" ,AUDIO="group_A1"
media_2.m3u8

15
16
17
A
33
34
395
435
46

[D—+H— <11

Adaptive Bit-Rate - MPEG-DASH

e The mpd file can contain multiple resolutions

e The media is represented in multiple layers

e Period
e Adaptation Set

e Representation

<Period id="0" start="PT0.0S">
<AdaptationSet id="0" contentType="video" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" fra
<Representation id="0" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="480684" width="540" height="960"

meRate="30/1" maxWidth="640" maxHeight="1138" par="9:16" lang="und">

sar="1:1"...>

<Representation id="2" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="1000000" width="640" height="1138" sar="5121:5120"|...
</AdaptationSet>
<AdaptationSet id="1" contentType="auvdio" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" lang="und">

<Representation id="1" mimeType="audio/mp4" codecs="mp4a.40.2" bandwidth="128000" audioSamplingRate="44100"|.|..

>

</AdaptationSet>

</Period>

15
16
17
A
33
34
395
435
46

Adaptive Bit-Rate - MPEG-DASH

Period

e Allows the division of a media file into multiple parts

e |e. Chapters

e For our purposes, we only need 1 period

<Period id="0" start="PT0.0S">
<AdaptationSet id="0" contentType="video" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" fra
<Representation id="0" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="480684" width="540" height="960"
<Representation id="2" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="1000000" width="640" height="113
</AdaptationSet>
<AdaptationSet id="1" contentType="audio" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" 1lan

meRate="30/1" maxWidth="640" maxHeight="1138" par="9:16" lang="und">
sar="1:1"[...p
8" sar="5121:5120"...p

g="und">

<Representation id="1" mimeType="audio/mp4" codecs="mp4a.40.2" bandwidth="128000" audioSamplingRate="44100"|.|..

>

</AdaptationSet>

</Period>

Adaptive Bit-Rate - MPEG-DASH

Adaptation Set

e Represents different parts of the media that will all be
combined Iinto one experience

e Can contain multiple video/audio adaptation sets

e eg. One for video, one for audio, and another for closed
captions

e The example below has one for video and one for audio

15
16
17
A
33
34
395
435
46

[D—+H— <11

<Period id="0" start="PT0.0S">

<AdaptationSet id="0" contentType="video" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" frameRate="30/1" maxWidth="640" maxHeight="1138" par="9:16" lang="und">

<Representation id="0" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="480684" width="540" height="960"

<Representation id="2" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="1000000" width="640" height="1138"

sar="1:1"...>

</AdaptationSet>
<AdaptationSet id="1" contentType="auvdio" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" lang="und">
<Representation id="1" mimeType="audio/mp4" codecs="mp4a.40.2" bandwidth="128000" audioSamplingRate="44100"|.|..P>

</AdaptationSet>

</Period>

sar="5121:5120"...

Adaptive Bit-Rate - MPEG-DASH

Representation
e Fach adaptation set can have multiple representations

e This is where we add multiple different bit-rates of the
media

e The browser will choose one representation for each
adaptation set at a given time based on bandwidth

15
16
17
A
33
34
395
435
46

[D—+H— <11

<Period id="0" start="PT0.0S">
<AdaptationSet id="0" contentType="video" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" fra

meRate="30/1" maxWidth="640" maxHeight="1138" par="9:16" lang="und">

<Representation id="0" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="480684" width="540" height="960"| sapr="1:1"|...p>
<Representation id="2" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="1000000" width="640" height="1138" sar="5121:5120"...p
</AdaptationSet>
<AdaptationSet id="1" contentType="auvdio" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" lang="und">
<Representation id="1" mimeType="audio/mp4" codecs="mp4a.40.2" bandwidth="128000" audioSamplingRate="44100"|.|..P>

</AdaptationSet>

</Period>

15
16
17
A
33
34
395
435
46

[D—+H— <11

Adaptive Bit-Rate - MPEG-DASH

Representation

e This example has 2 resolutions for video that the browser

can choose
e 480kb of 1Mb bandwidth

e This example only has one representation of the audio

track
e Only 128kb bandwidth

<Period id="0" start="PT0.0S">
<AdaptationSet id="0" contentType="video" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" fra
<Representation id="0" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="480684" width="540" height="960"

meRate="30/1" maxWidth="640" maxHeight="1138" par="9:16" lang="und">

sar="1:1"...>

<Representation id="2" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="1000000" width="640" height="1138" sar="5121:5120"|...
</AdaptationSet>
<AdaptationSet id="1" contentType="auvdio" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" lang="und">

<Representation id="1" mimeType="audio/mp4" codecs="mp4a.40.2" bandwidth="128000" audioSamplingRate="44100"|.|..

>

</AdaptationSet>

</Period>

Adaptive Bit-Rate - MPEG-DASH

nesreamo-cooomas @ E@Ch representation has it's own set of content files

)

15
16
17
25
33
34
395
45
46

O e O O S e O e O O O

chunk-stream0-00002.m4s

e A A [[B 1
cunesiesmooooinas e g, "chunk-stream0-0000X.m4s" and "init-stream0.m4s
chunk-stream1-00002.m4s

)

.’H'
"

INnit-stream0.m4s

INnit-stream1.m4s

= 1
-l l

' T a
\..'..l

" |
i

‘,-‘ T] i pe o B ™~ ava (*." (x.] P) ,/. -
NUNK-StreamZ-00004Z.m4&s

000 are the files containing the video representation with id ==

] Yy N - " MM N f::.
K-stream1-00003.m4s

a

i N . r ava /\| //' - 7 .
K-stream1-00004.m4s

given the circumstances

e Your server hosts all files

- 14 ~ = o ~arva’) v e~
INIC-Stream4<.ma4as

output.mpd

- <Period id="0" start="PT0.0S">

- <AdaptationSet id="0" contentType="video" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" frameRate="30/1" maxWidth="640" maxHeight="1138" par="9:16" lang="und">
[+] <Representation id="0" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="480684" width="540" height="960"| sar="1:1"[...p>

[+ <Representation id="2" mimeType="video/mp4" codecs="avcl.64001f" bandwidth="1000000" width="640" height="1138" sar="5121:5120"...p

o </AdaptationSet>

S <AdaptationSet id="1" contentType="auvdio" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true" lang="und">

[+ <Representation id="1" mimeType="audio/mp4" codecs="mp4a.40.2" bandwidth="128000" audioSamplingRate="44100"|.|..P>

& </AdaptationSet>

a </Period>

e oo @ The browser dynamically requests the specific files desired

' T a
Al l

™~
i

Adaptive Bit-Rate

e Your task [For AO2]:
e Choose between HLS and MPEG-DASH

e Programmatically convert an uploaded mp4 into the format
you choose with multiple resolutions

e Serve those videos by setting the source of a video to the
index file for that video

e Hint: Get ffmpeg to do all the work for you
* You should not manually write any of these files

e Do research to find the command(s)/flags you need to send
to ffimpeg to do the job

Video Players

e Most built-in video players do not support HLS or MPEG-
DASH

 You cannot rely on the browser having a player for
either of these formats (eg. During grading we will not
use a browser with built-in support for HLS or MPEG-
DASH)

e \We must use a 3rd party video player
e Several players available (eg. dash.|s)

e Examples in the following slides will use video.js

<!DOCTYPE html>
J<html lang="en">

<link href="https://vjs.zencdn.net/8.10.0/video-js.css" rel="stylesheet"/>
<title>CSE312 Video Example</title>

<video class="video-js" width="300" controls autoplay data-setup="{}">

1
2
3
4
S
6
7
8
9

J<video class="video-js" width="300" controls autoplay data-setup="{}">
<source src="output.mpd"/>

<source src="main.m3u8"/> .
/ Your browser does not support video playback

Your browser not rt vi 1 k
our browser does not suppo deo playbac </video>

A</video>

<script src="https://vjs.zencdn.net/8.10.0/video.min.js"></script>

Video Players

* Your video player will now have a consistent look across all
browsers

e Don't have to worry about what formats each browser supports

* You support any format supported by video.|s

e e)z

1 <!DOCTYPE html>

2 %d}tml lang="en">

3 J<head>

4 <link href="https://vjs.zencdn.net/8.10.0/video-js.css" rel="stylesheet"/>

5 <tit1le>CSE312 Video Example</title>

6 Q</head>

7 CI<body>

38

9 C<video class="video-js" width="300" controls autoplay data-setup="+{}">

10 <source src="main.m3u8"/>

11 Your browser does not support video playback

12 Q</video>

15 r" o
14 <script src="https://vjs.zencdn.net/8.10.0/video.min.js"></script> > 0:03/0:15 ‘D - .
15 9</body>

16 E</html>

Live Streaming

Live Streaming

e We've talked about uploading and host mp4 videos
using a streaming protocol

e AVOD service
e \What about live streaming?
e Most live streaming isn't truly live

 There will be several seconds of delay in the stream

e Acceptable loss to gain accuracy

Live Streaming

e Typical setup (eg. Twitch/YouTube Live/etc.)

e User streams their video into an ingest server using the
Real-Time Messaging Protocol (RTMP)

e RTMP Is a container for any real-time communication

e The content of RTMP happens to be a media stream In
this case

e The server transcodes the video into a streaming format
(eg. HLS/MPEG-DASH) and continually updates/
generates index files

Live Streaming

e \When a viewer visits a live stream

e The browsers asks for the latest index file and starts
requesting content

e When it nears the end of that index file, request a new
index file

e Repeat until the stream ends

e \When a viewer visits the VOD of a past live-stream
e Serve an index file for then entire stream

 No different than watching the stream live

Live Streaming

e Since the transcoding process of the ingest server takes
some time:

e The stream is not truly live
e The streamed content is downloaded via TCP/HTTP

e Reliable. You will not miss a second of video

e |[f the delay is unacceptable (eg. Zoom):
e Use UDP instead of TCP
e Do not transcode

e Accept dropped packets as a part of life

