
Video - ABR

The Problem
• You host a video on your web app

• You want high quality so you host a large 1080p mp4

• The entire file is 100's of MB

• Every user visiting your page has to download the
entire video before playback can begin

• Very slow to load

• Entire file must download even for users who will
only watch for a few seconds

Chunking
• Avoid the requirement of downloading the entire video before it plays

• Provided a way to request short segments of the video

• Download one "chunk" of the video at a time

• Typically ~2-10 seconds of playback

• Advantages:

• Only a few seconds need to be downloaded before playback starts

• If the user skips around in the video, only request they chunk they
skipped to

• If the user leaves the page without finishing the video, the entire file
doesn't have to be downloaded

Chunking - Range
• Even mp4 videos can be chunked

• The browser may end a request for a large file that includes a Range
header

• The Range header specifies a range of bytes being requested

• eg. A request for "/video.mp4" with a header "Range: 10000-20000"
is request the 9999th through 19999th bytes of video.mp4

• The response code should be 206 Partial content

• The response should contain a Content-Range header

• Contains the range of bytes being sent and the to total size of the
file

• eg. Content-Range: 10000-20000/500000

• eg. Content-Range: 0-499999/500000 if the entire file is sent

Chunking - Range
• Using the Range header can be effective in some

cases, however:

• It adds extra complexity to the server

• It relies on the browser to request useful ranges

• Some browsers might not implement Range and ask
for the entire file

• We would like a more robust solution

Chunking - Multiple Files
• Instead of relying on the browser asking for a specific

range of bytes..

• We host a single video in multiple files

• Each file contains a few seconds of playback

• The browser requests each segment as needed

• User only watches a few seconds -> Only need to
request the first few segments

• User skips to the middle of the video -> Request the
middle segment

HLS vs MPEG-DASH
• Two major protocols support the idea of breaking a video into smaller

segments/chunks: HLS and MPEG-DASH

• HTTP Live Streaming (HLS)

• Developed by Apple

• Only supports the H.264 encoding for video

• Wide-spread adaptation

• Spec freely available in RFC8216

• Dynamic Adaptive Streaming over HTTP (MPEG-DASH)

• Developed by Moving Picture Experts Group (MPEG)

• Supports any video encodings

• No support on Apple devices

• Spec published as ISO/IEC 23009-1:2022 - Available for $245 (!)

HLS
• Divide the video into multiple .ts files

• MPEG Transport Stream files

• One .m3u8 index file containing information
about each .ts file and how they combine into a
single video

• Your server hosts all files

• Set the video source as the index file

• Browser reads the index file to know when to
request each ts file

HLS - Transcoding

• Use ffmpeg to convert to HLS

• "-f hls" to specify the output format as HLS

• "-hls_list_size 0" to keep all ts files in the index

• By deafult, ffmpeg will only keep the last 5 ts files in the
index file

• This is good if you are live-streaming (This is the HTTP
Live Streaming protocol after all)

• Since our use case is hosting Video on Demand (VOD), we
want to keep every ts file in the index

• Setting the list size to 0 means the size is not limited

ffmpeg -i space.mp4 -hls_list_size 0 -f hls space.m3u8

MPEG-DASH
• Divide the video into multiple files

that can use a variety of formats
(m4s by default in ffmpeg output
which is mp4 encoded)

• One .mpd (Media Presentation
Description) index file containing
tons of information in an XML
format

• Hosts all files and set the video
source as the index file

• Browser reads the index file to find
an init file and naming convention
for content files to request

MPEG-DASH • Full mpd file from the example

MPEG-DASH - Transcoding

• Use ffmpeg to convert to MPEG-DASH

• "-f dash" to specify the output format as MPEG-DASH

• Creates an mpd with the name you provide

• All other files follow a default naming convention

• May want to create a new directory for each video to
avoid naming conflicts

ffmpeg -i space.mp4 -f dash space.mpd

Adaptive Bit-Rate
Streaming

The Problem
• You host a video on your web app

• You even use HLS or MPEG-DASH to segment the video into
2-10 seconds chunks

• You want high quality so you host chunks in 4K@60Hz

• Can require ~25Mb/s bandwidth to stream

• And someone visits your site using eduroam on a bad day..

• The video buffers, stutters, or doesn't play at all

• We need a solution that:

• Allows users with slow connections to enjoy your content

• Delivers high quality to users with high-speed Internet

Adaptive Bit-Rate
• Instead of hosting the a single video at a single resolution

• Host multiple versions of the same video at different
resolutions

• Each resolution requires a different bit rate to stream

• User visits your page

• Their browser adapts to the current download
bandwidth available

• Stream the highest bit rate video that fits the bandwidth

Adaptive Bit-Rate
• Using HLS or MPEG-DASH

• Create chunks at several different resolutions/bit rates

• Add information about all resolutions in the index file

• With the video segmented into ~2-10 second chucks

• Easy for the browser to switch between resolutions

Adaptive Bit-Rate
• The browser can adapt the requested bit-rate based on current conditions

• Limited interruption for the user, though quality can change over time

4k

1080p

480p

potato

wifi slows down wifi speeds up

Adaptive Bit-Rate - HLS
• Using HLS, m3u8 index files can be nested

• Convert your video into multiple HLS resolutions

• Combine them into a single index file with references to the
others

• This example contains references to 2 video index files at
different resolutions, and 1 audio index file

Adaptive Bit-Rate - MPEG-DASH
• The mpd file can contain multiple resolutions

• The media is represented in multiple layers

• Period

• Adaptation Set

• Representation

Adaptive Bit-Rate - MPEG-DASH
Period

• Allows the division of a media file into multiple parts

• ie. Chapters

• For our purposes, we only need 1 period

Adaptive Bit-Rate - MPEG-DASH
Adaptation Set

• Represents different parts of the media that will all be
combined into one experience

• Can contain multiple video/audio adaptation sets

• eg. One for video, one for audio, and another for closed
captions

• The example below has one for video and one for audio

Adaptive Bit-Rate - MPEG-DASH
Representation

• Each adaptation set can have multiple representations

• This is where we add multiple different bit-rates of the
media

• The browser will choose one representation for each
adaptation set at a given time based on bandwidth

Adaptive Bit-Rate - MPEG-DASH
Representation

• This example has 2 resolutions for video that the browser
can choose

• 480kb of 1Mb bandwidth

• This example only has one representation of the audio
track

• Only 128kb bandwidth

Adaptive Bit-Rate - MPEG-DASH
• Each representation has it's own set of content files

• eg. "chunk-stream0-0000X.m4s" and "init-stream0.m4s"
are the files containing the video representation with id == 0

• The browser dynamically requests the specific files desired
given the circumstances

• Your server hosts all files

• Your task [For AO2]:

• Choose between HLS and MPEG-DASH

• Programmatically convert an uploaded mp4 into the format
you choose with multiple resolutions

• Serve those videos by setting the source of a video to the
index file for that video

• Hint: Get ffmpeg to do all the work for you

• You should not manually write any of these files

• Do research to find the command(s)/flags you need to send
to ffmpeg to do the job

Adaptive Bit-Rate

Video Players
• Most built-in video players do not support HLS or MPEG-

DASH

• You cannot rely on the browser having a player for
either of these formats (eg. During grading we will not
use a browser with built-in support for HLS or MPEG-
DASH)

• We must use a 3rd party video player

• Several players available (eg. dash.js)

• Examples in the following slides will use video.js

Video Players
• This example downloads the css and js for video.js from a CDN

• Uses "class" and "data-setup" attributes on a video element to tell the
library to do its thing

• You now have a video player that supports both HLS and MPEG-DASH

Video Players
• Your video player will now have a consistent look across all

browsers

• Don't have to worry about what formats each browser supports

• You support any format supported by video.js

Live Streaming

Live Streaming
• We've talked about uploading and host mp4 videos

using a streaming protocol

• A VOD service

• What about live streaming?

• Most live streaming isn't truly live

• There will be several seconds of delay in the stream

• Acceptable loss to gain accuracy

Live Streaming
• Typical setup (eg. Twitch/YouTube Live/etc.)

• User streams their video into an ingest server using the
Real-Time Messaging Protocol (RTMP)

• RTMP is a container for any real-time communication

• The content of RTMP happens to be a media stream in
this case

• The server transcodes the video into a streaming format
(eg. HLS/MPEG-DASH) and continually updates/
generates index files

Live Streaming
• When a viewer visits a live stream

• The browsers asks for the latest index file and starts
requesting content

• When it nears the end of that index file, request a new
index file

• Repeat until the stream ends

• When a viewer visits the VOD of a past live-stream

• Serve an index file for then entire stream

• No different than watching the stream live

Live Streaming
• Since the transcoding process of the ingest server takes

some time:

• The stream is not truly live

• The streamed content is downloaded via TCP/HTTP

• Reliable. You will not miss a second of video

• If the delay is unacceptable (eg. Zoom):

• Use UDP instead of TCP

• Do not transcode

• Accept dropped packets as a part of life

