
WebRTC



WebSocket Review
• Client sends an HTTP GET request to the WebSocket path


• Client sets headers


• Connection: Upgrade


• Upgrade: websocket


• Sec-WebSocket-Key: <random_key>


• Server responds with 101 Switching Protocols with 
headers


• Connection: Upgrade


• Upgrade: websocket


• Sec-WebSocket-Accept: <accept_response>



WebSocket Review
• The client generates a random "Sec-WebSocket-Key" for 

each new WebSocket connection


• The server appends a specific GUID to this key


• "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"


• Computes the SHA-1 hash


• "Sec-WebSocket-Accept" is the base64 encoding of the hash


• Why?


• Ensure client and server both implement the protocol


• Highly unlikely this value would be returned by accident


• Avoid caching



WebSocket Review

https://tools.ietf.org/html/rfc6455#section-5.2

https://tools.ietf.org/html/rfc6455#section-5.2


WebSocket Review
• Payload Length

• Represented as either 7, 16, or 64 bits

• Masking

• Read the 4 mask byes

• Unmask the payload by XORing each byte of the 

payload with the matching mask byte

• Do not mask frames send by your server



WebRTC Demo



WebRTC - Overview
• Web Real Time Communication


• Establishes a live streaming peer-to-peer 
connection


• We'll stream video and audio to make a video chat 
app


• Stable release in 2018


• Widely adopted by major browsers


• Most of the WebRTC logic/code is built into your 
browser



WebRTC - Overview
• WebRTC establishes a live streaming peer-to-peer 

connection


• Peer-to-peer 

• Two clients will communicate without the use of a server


• Your server will only help the clients establish the 
connection


• The server does not handle the steaming data


• Excellent for anyone concerned with privacy


• Though your ISP can still see your data..



WebRTC - Overview
• WebRTC establishes a live streaming peer-to-peer 

connection


• Live streaming 

• The protocol is meant for live (real-time) streaming


• End-to-end delay is critical!


• Even a small delay will result in clients talking over each 
other on a voice/video call



WebRTC - Overview
• WebRTC establishes a live streaming peer-to-peer 

connection


• Live streaming 

• TCP can be slow!


• Meant for reliability


• If a packet is dropped, request a resend and wait


• Only deliver bytes after all packets arrive and are 
reassembled


• Not suitable for live [real-time] streaming*

Other protocols are used when delays are tolerable (ie. not real-time) like YouTube Live or Twitch



WebRTC - Overview
• WebRTC establishes a live streaming peer-to-peer 

connection


• Live streaming 

• WebRTC uses UDP instead of TCP


• UDP (User Datagram Protocol)


• Meant for speed


• If a packet is dropped, it's lost forever. Move on with your life


• Bytes are delivered as soon as they are received 


• Very close to using raw IP packets



WebRTC - Overview
• Servers are still involved


• We'll discuss 3 types of servers that assist in WebRTC 
connections


• Signalling Server


• This is the one you'll implement


• Passes messages between clients to help them establish 
a peer-to-peer connection


• Once the connection is established, the server's job is 
done (Unless you want to pass a disconnect message)



WebRTC - Overview
• Servers are still involved


• We'll discuss 3 types of servers that assist in WebRTC 
connections


• STUN (Session Traversal Utilities for NAT) Server


• A server that tells clients their public IP/port


• Clients behind a NAT or firewall may not know their public 
IP/port


• Ask the STUN server then send this info to the signaling 
server



WebRTC - Overview
• Servers are still involved


• We'll discuss 3 types of servers that assist in WebRTC 
connections


• TURN (Traversal Using Relays around NAT) Server


• Optional for WebRTC connections [Most of the time] 

• All WebRTC packets for a connection are routed through the 
TURN server if one is used


• Needed when the NATs/Firewalls are too restrictive to allow a true 
peer-to-peer connections (eg. Symmetric NATs require a TURN)


• Kind of defeats the purpose of WebRTC if you ask me..



WebRTC
• Reminder


• Only need to implement the signaling server for the HW


• Details on what to code in the next lecture


