
OAuth 2.0

Web API
• Many apps have APIs that can be used to interact with user data

programmatically

• Such apps will [typically] allow users to access their data in 2 ways:

• Using the app itself - loading the page and interacting with the UI
(User Interface)

• Connecting to the API - Sending HTTP requests directly to the
server without using the front end

• Using the API allows us to write custom programs that interact with
the app

• eg. A programs that starts/stops Spotify playback

Web API
• Web APIs use endpoints

• API Endpoint: A combination of path and HTTP method that has specific
behavior

• Examples:

• POST /chat-message - Adds a message to chat

• DELETE /chat-message/<mesageId> - delete the chat message with an
id matching <messageId>

• PUT api.spotify.com/v1/me/player/play - begin music playback

• POST api.github.com/repos/<owner>/<repo>/issues - create an issue in
the repo <owner>/<repo>

• GET api.github.com/repos/<owner>/<repo>/issues - get all issues in the
repo <owner>/<repo>

Web API
• How do we securely consume an API?

• The API server can verify an existing authentication token

• These tokens were not designed for API access

• Gives full access to the account without restriction

• More commonly, the API will issue an API key to the user

• Send this key with each API access

• Server verifies the user associated with the key for authorization

• Keys can have restricted functionality and are only used for API
access (Not as detrimental if compromised)

Web API
• How do we securely consume an API?

• The API server can verify an existing authentication token

• These tokens were not designed for API access

• Gives full access to the account without restriction

• More commonly, the API will issue an API key to the user

• Send this key with each API access

• Server verifies the user associated with the key for authorization

• Keys can have restricted functionality and are only used for API
access (Not as detrimental if compromised)

User

• Authenticate
with
username
and
password

• Request an
API key

• Use the API
key to
access
private data
from the API

Server

Web API
register/login

auth token

Request API key

-Auth token

API key

API endpoint

-API key

200 OK

-Private data

OAuth?

• This setup works well

• So where does OAuth come in?

The Problem
• A user enjoys an app (eg. GitHub) that has a web API

• You want to write a app that consumes the GitHub API on
behalf of your users. Examples:

• You're building a bug reporting app that creates GitHub
issues for your users

• You want users to access their private repos through your
app

• You want a "sign up with GitHub" button on your app

The Problem

In general, You want to write an app that uses a 3rd
party API to access/modify your users private data

How do we do this securely?

A BAD Attempt
• Never do this!!

• ..Have your users give you their GitHub username and password

• Effective, but very insecure

• Never ask users for their password outside of registration/login.

• We did a lot of work hashing/salting to make sure we can't
know passwords

• This would require us to store plaintext passwords so we can
reuse them each time a user wants to access the API through
our app

Another BAD Attempt
• Never do this!!

• ..Have the user give you their GitHub API key

• No nearly as bad as storing their password

• Vulnerable to several different attacks (Discussed as we introduce
solutions)

• API key rate limiting will count against the user when we use the key

• Problem if the user gets denied access because your app
overused the key

• Big problem if the API charges $ per access

OAuth 2.0
• OAuth 2.0 (Open Authorization 2.0)

• The current, most widely used, solution to this problem

• Designed to allow apps to use 3rd party APIs on behalf of their
users in a secure way

• User still has to trust the app with their data

• They are explicitly giving the app permission to access their
private data so this should be assumed

• The handling of this access is secure

• Protected from outside attackers

User / Resource Owner

• What we want:

• App asks user for their API key

• User obtains an API key and sends it to our app

• Our app uses the key to make API requests

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

5. API access

6. Private data

User / Resource Owner

• Security issues:

• The API has no idea that user allowed your app to use
this key

• The API must respect any request containing this key
(No compromise detection)

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

5. API access

6. Private data

User / Resource Owner

• Security issues:

• The user has to handle their own API key

• Key can be compromised at this point

• Never trust your users, even with their own security

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

5. API access

6. Private data

User / Resource Owner

• Security issues:

• Your server obtains the user's API key

• Make API requests as the user (As opposed to on behalf of the
user)

• Lack of accountability for the app

3rd Party API /
Auth Server /

Resource Server

1. Request API key

3. API key
Your App / Client

2. Request API key

4. API key

5. API access

6. Private data

OAuth 2.0
OAuth 2.0 will fix these issues with one simple fix

• The API issue API keys (Called access tokens)
to your app directly

• If another app tries to use the key, the request is
denied

• User never handles the access token (No need to
trust them)

• Our app is accountable for the use of the access
token

User / Resource Owner

• Let's update this picture with the API
issuing an access token to our client

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant
Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

• That's better!

• But how does it all work??

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant
Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

• 1: Your app asks the user to obtain an authorization
grant allowing the app to use the API on their behalf

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant
Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

• 2. The user sends the request to
the authentication server

• The user is authenticated
(username/password or auth token)

• User is asked if they want to allow
access

• Contains a list of roles that the
request is asking for permission
to use

3rd Party API /
Auth Server /

Resource Server3. Authorization Grant

2. Authorization Request

User / Resource Owner

• 3: If the user is authenticated and accepts, an
authorization grant is send in the url of redirect URI
registered by the client

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant
Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

• 4: Your app receives a request from the user at the redirect URI
containing the authorization grant

• Your app now has permission from the user to access the API

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant
Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

• 5: Your app will connect to the auth server and "cash in" the grant for
an access token

• This step prevents the user from ever handling their access token

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant
Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

• 6: The auth server will verify the identity of the client
using a client secret and send the access token directly
to your app

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant
Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

User / Resource Owner

• 7/8: Your app can now use the access token
to access the API on behalf of your user

3rd Party API /
Auth Server /

Resource Server

1. Authorization Request

3. Authorization Grant
Your App / Client

5. Authorization Grant

6. Access Token

2. Authorization Request

4. Authorization Grant

7. API Access

8. Private Data

Client Registration
• Before any of this process can start, you must register your

app with the API

• 3 Key pieces of data:

• Client ID: A unique id assigned for your app. This is
public information

• Client Secret: Generated by the API. It should be kept
secret if possible and can be used to authenticate your
app

• Redirect URI: Provided by you. This is where the API will
send your user after generating the authorization grant

