
WebRTC



WebRTC
• Need to establish a real-time streaming peer-to-peer connection


• But how?


• Need the IP address of your peer


• Need to agree on the details of the connection



WebRTC - Connecting
• One peer needs to get an offer to the other peer


• This is an offer to establish a connection that contains:


• audio/visual codec, bitrate, etc details (How to interpret the 
bytes once the streaming starts)


• A username fragment ("ice-ufrag") as a unique identifier

webRTC-offer



WebRTC - Connecting
• The peer responds with an answer


• The answer contains their audio/visual data


• Contains their own ufrag so the connection can be identified


• Once the answer is received, the peers agree to connect

webRTC-offer

webRTC-answer



WebRTC - Connecting
• But there's a problem


• How do we send these messages between two peers?

webRTC-offer

webRTC-answer?



WebRTC - Connecting
• For usual web traffic with a server:


• Type in a domain name or click a link containing a domain 
name


• Use DNS to lookup the [static] IP address of the server


• Send a request to the IP address on port 80 or 443

webRTC-offer

webRTC-answer?



WebRTC - Connecting
• For peer-to-peer traffic:


• We need to discover the IP and port of the peer without DNS


• Peer IP/port can change (dynamic IP)

webRTC-offer

webRTC-answer?



WebRTC - Signalling Server
• Offer and answer are sent through a signaling server


• On the HW - You are the signaling server!! 

• Both peers connect to your server


• Send offer/answer to the server and the server forwards the messages to 
the other peer

webRTC-offer

webRTC-answer

webRTC-offer

webRTC-answer

Signalling Server



WebRTC - Signalling Server
• We need a method to send these messages


• We'll need a way for the server to be able to send messages to 
each client in real-time

webRTC-offer

webRTC-answer

webRTC-offer

webRTC-answer

Signalling Server



WebRTC - Signalling Server
• We need a method to send these messages


• We'll need a way for the server to be able to send messages to 
each client in real-time


• Wow! It's really convenient that we have WebSockets!

webRTC-offer

webRTC-answer

webRTC-offer

webRTC-answer

Signalling Server



WebRTC - Signalling Server
• When your server receives a WebSocket frame containing an 

offer or answer


• Send the payload to the other peer over their WebSocket

webRTC-offer

webRTC-answer

webRTC-offer

webRTC-answer

Signalling Server



WebRTC - NATs
• We have another issue..


• How do we know the IP address and port for each peer?

Signalling Server
NAT NAT

192.168.0.5 
port: 8956

192.168.0.52 
port: 14568

23.34.59.30 
port: 5670

159.89.179.140 
port: 10678



WebRTC - NATs
• Devices are commonly "hidden" behind NAT routers 


• Network Address Translation


• With a NAT:


• You have a local IP address for communication on your local network


• When communicating outside your network, the NAT router sends 
your message using a public IP address and port number

Signalling Server
NAT NAT

192.168.0.5 
port: 8956

192.168.0.52 
port: 14568

23.34.59.30 
port: 5670

159.89.179.140 
port: 10678



WebRTC - NATs
• With a NAT:


• Many devices on a local network can share a single public IP 
address


• Each device does not know it's public IP/port used when it 
communicates to the outside world


• [Also the problem that port-forwarding solves]

Signalling Server
NAT NAT

192.168.0.5 
port: 8956

192.168.0.52 
port: 14568

23.34.59.30 
port: 5670

159.89.179.140 
port: 10678



WebRTC - STUN Server
• Solution: Use a STUN (Session Traversal Utilities for NAT) Server


• Each peer connects to a STUN server and asks for their public 
IP/port


• STUN server checks the origin IP/port and informs the client


• We'll use Google's free STUN server (stun2.1.google.com:19302)

STUN Server

What's my IP?

STUN Server

What's my IP?



WebRTC - ICE Candidate
• Each peer sends their public IP/port, and connection 

information, in an ICE (Interactive Connectivity Establishment) 
candidate message


• Whenever your signaling server receives an ICE candidate, 
forward it to the other peer

Signalling Server

STUN Server

What's my IP?

STUN Server

What's my IP?

webRTC-candidate webRTC-candidate



WebRTC - ICE Candidate
• Candidate contains:


• Connection type - UDP, not TCP


• IP/port - Local in this example


• Username fragment - Uniquely identifies the connection

Signalling Server

STUN Server

What's my IP?

STUN Server

What's my IP?

webRTC-candidate webRTC-candidate

{"candidate":"candidate:2382557538 1 udp 2122260223 192.168.1.19 54090 typ host generation 0 ufrag FGP/ network-id 1 
network-cost 10","sdpMid":"0","sdpMLineIndex":0}



WebRTC - Connection
• And now we can establish a peer-to-peer connection!

Signalling Server

STUN Server

What's my IP?

STUN Server

What's my IP?

webRTC-offer 
webRTC-answer 

webRTC-candidate

webRTC-offer 
webRTC-answer 

webRTC-candidate



WebRTC - Summary
• One peer sends an offer to the other


• Other peer responds with an answer


• Both peers get their public IP/port from their STUN Servers


• Both peers send their ICE candidates to the other

Signalling Server

STUN Server

What's my IP?

STUN Server

What's my IP?

webRTC-offer 
webRTC-answer 

webRTC-candidate

webRTC-offer 
webRTC-answer 

webRTC-candidate



WebRTC - Summary
• Once the connection is established


• The servers step aside and the clients stream directly 
to each other


• True peer-to-peer!

Signalling ServerSTUN Server STUN Server

Streaming Audio/Video



WebRTC - Summary
• Your role in all of this?


• Route the offer/answer/candidate messages between peers


• No need to read/parse/interpret the RTC portion of these messages


• Extract the payload from the WS frame, send it to the appropriate 
peer as a new WS frame

Signalling Server

STUN Server

What's my IP?

STUN Server

What's my IP?

webRTC-offer 
webRTC-answer 

webRTC-candidate

webRTC-offer 
webRTC-answer 

webRTC-candidate



WebRTC - Restrictions
• The browser will not allow WebRTC connections when 

connected to a site using HTTP (as opposed to HTTPS)


• Must have an encrypted connection to use WebRTC 

• *Unless connecting over localhost (Let's us test locally)

Signalling Server

STUN Server

What's my IP?

STUN Server

What's my IP?

webRTC-offer 
webRTC-answer 

webRTC-candidate

webRTC-offer 
webRTC-answer 

webRTC-candidate



WebRTC - Restrictions
• Sometimes a peer-to-peer connection cannot even be 

established


• Can have restrictive firewalls


• Dynamic NATs might change your port unexpectedly


• Organizations might block certain traffic on their network



WebRTC - TURN Server
• In cases where peer-to-peer is blocked:


• Use a TURN (Traversals Using Relays around NAT) Server


• After the connection is established using a signaling 
server, each peer routes their streaming data through a 
TURN server

TURN Server

Streaming Audio/Video Streaming Audio/Video



WebRTC - TURN Server
• If you ask me... using a TURN server defeats the 

purpose of using a peer-to-peer technology


• ... Unless you run your own TURN server!

TURN Server

Streaming Audio/Video Streaming Audio/Video



WebRTC - On the HW
• You implement the signaling server


• For AO2, you may assume that there are exactly 2 WS 
connections


• When you receive a WebRTC message from one 
connection, send it to the other connection

Signalling Server

STUN Server

What's my IP?

STUN Server

What's my IP?

webRTC-offer 
webRTC-answer 

webRTC-candidate

webRTC-offer 
webRTC-answer 

webRTC-candidate



WebRTC - On the HW
• For AO3, you can have any number of peers (max of 4 connections when 

grading)


• Must modify the front end to support multiple WebRTC connections 
(You are expected to study the front end and understand how it works)


• Each peer maintains a connection to each peer


• Server must route WebRTC messages to the appropriate peer

Signalling Server

STUN Server

What's my IP?

STUN Server

What's my IP?

webRTC-offer 
webRTC-answer 

webRTC-candidate

webRTC-offer 
webRTC-answer 

webRTC-candidate


