DoS

Denial of Service

- Denial of Service (DoS) Attack
 - Prevent the server from being used by legitimate users
- General strategy
 - Overwhelm the server with requests
 - The requests use all of the servers resources
 - Anyone attempting to use the app during the attack will not get responses from their requests
- Discuss: How would you attack a server?

DoS Prevention

- Constant back-and-forth between attacks and prevention
- Each side continuously evolves in an attempt to counter the other
- Preventing DoS attacks is difficult without affecting legitimate users
- You'll implement one prevention method in your project:
 - IP Blocking

Demos

DoS-Brute Force

- Brute force attack
 - Just mash refresh on the page... or
 - Write code that will send a request
 - Call that code in a loop
- Very simple attack
- Very simple prevention
 - Write efficient code for your app
 - The attack is effectively a load test
 - Your app should be ready for a large number of users

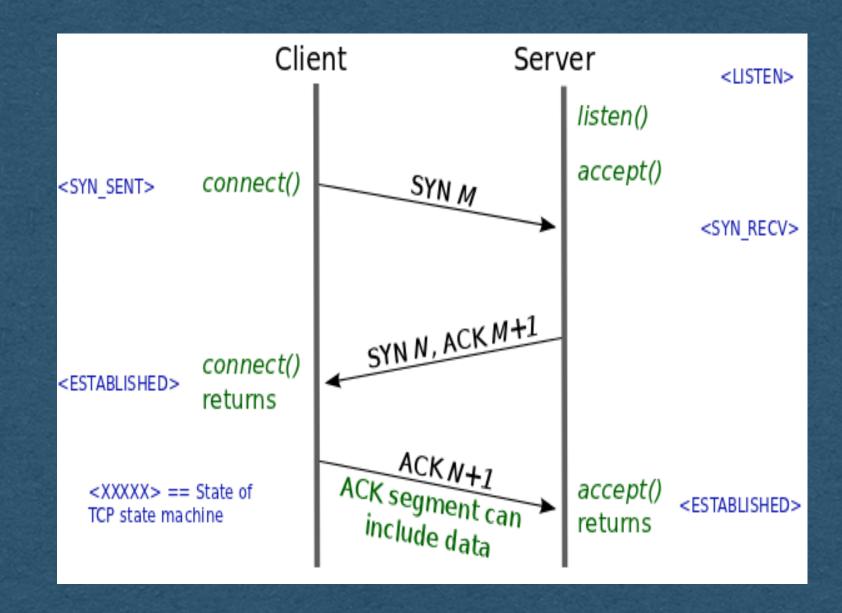
DoS - Content-Length

- An attacker can get more sophisticated than brute force by playing with the Content-Length header
- How does your code buffer POST requests?
 - Read the content length
 - Read bytes from the TCP socket until you read that many bytes
- How does an attacker exploit this?
 - Send a request with a Content-Length of 20
 - Only send 19 bytes in the body
 - Your code gets stuck in an infinite loop
 - Send these requests in a loop to force the server to keep many connections open

DoS - Slow Send

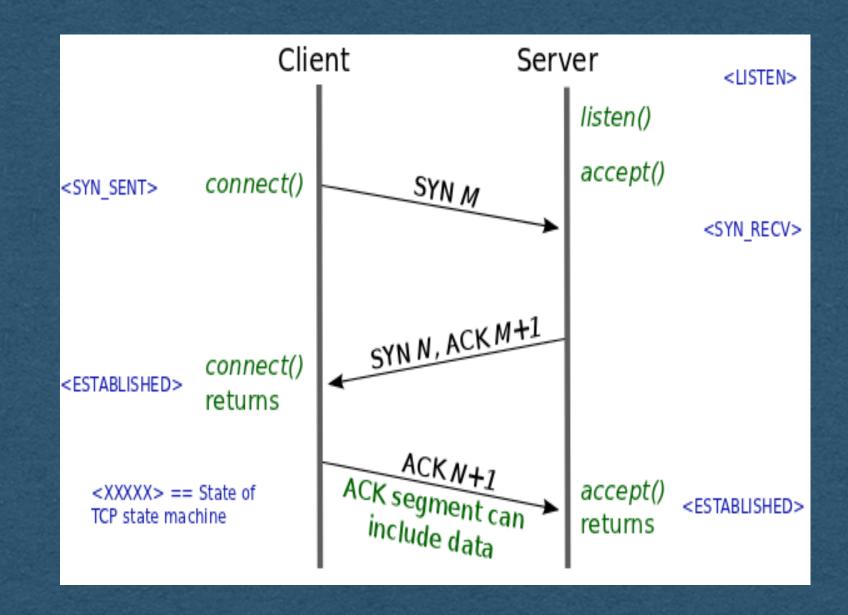
- Next step of prevention:
 - Set a timeout in your loop
 - If you haven't received any bytes after a fixed amount of time, close the connection
- Next evolution of the attack:
 - Drip feed the content
 - Instead of sending all the bytes right away, send them very slowly
 - eg. Set Content-Length to 100,000, then send 10 bytes/second
 - Prevents the timeout from activating

DoS - Slow Send


- Next evolution of the attack:
 - Send bytes very slowly
- Next step of prevention:
 - No obvious answer for this attack
 - Prevention must distinguish between a slow send attack and a legitimate user with a slow connection
 - Attackers evolve to accurate simulate a user with a slow connection

DoS - Slow Read

- A related attack is to read server responses very slowly
- Instead of reading 2048 whenever data is ready, read a few bytes/second
- Can take a very long time to read one response from the server
 - Server must keep this TCP connection open the whole time


DoS - SYN Flood

- Recall the TCP three way handshake
 - Client sends SYN
 - Server responds with SYN + ACK
 - Client responds with ACK

DoS - SYN Flood

- SYN Flood attack:
 - Send a SYN to the server
 - Stop.
- Very cheap to send a SYN packet
 - Can send large numbers of them very quickly
 - Server responds and waits for the ACK that never comes
 - Server has lots of half-open connections until they time out
 - Uses servers resources to keep these connections open

DoS Prevention: IP Blocking

- IP blocking
 - If you see many requests, or other suspicious behavior, from the same IP address
 - Block connections from that IP address

- When setting this up for your project:
 - All requests will come from nginx (ie. localhost)
 - Configure nginx to forward the real ip address of the client in a header
 - Read the header in your server code to add IP blocking

DDOS

- So we block offending IP addresses
 - Game Over. Eventually block all attacker IPs...
 - IP addresses can be spoofed..
 - But more problematic is the DDoS attack

DDOS

- Distributed Denial of Service (DDoS)
 - Instead of using one machine to launch an attack...
 - Use as many machines as you can access
 - Launch any/all of the previous attacks from all machines
 - Very difficult to prevent against since it can look much more like legitimate traffic from a variety of users

DDoS and BotNets

- How does an attacker gain access to enough machines to launch a DDoS attack?
 - Using a BotNet
- Viruses "Back in the day"
 - Attacker infects your device with a virus
 - The virus destroys your device and renders it unusable
 - Do it for the lolz
 - No real gain for the attacker

DDoS and BotNets

- Viruses in current year
 - Attacker infects your device with a virus
 - The virus runs silently in the background waiting for commands from the attacker
 - Infected machines become part of the attackers BotNet
 - The attacker can now use the resources of all these machines
 - Launch a DDoS attack from their BotNet
 - Looks even more like legitimate users since many of them are legitimate users
 - Lucrative for the attacker
 - Can sell access to their BotNot
 - Or just mine crypto...